

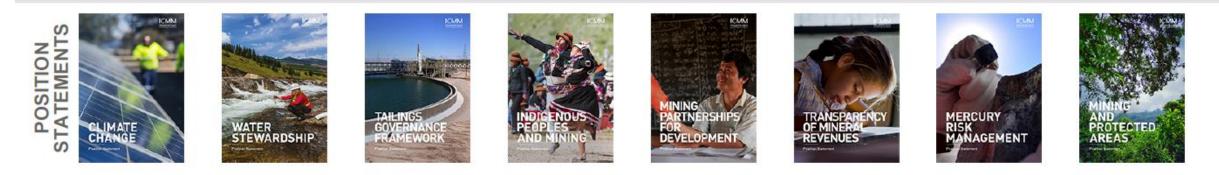
March 2021

MINING AND BIODIVERSITY

Hafren Williams, Manager Environment and Responsible Sourcing The International Council on Mining and Metals

ICMM COMPANY MEMBERS

Representing 28 member companies and over 35 regional and commodities associations



ICMM MEMBERSHIP REQUIREMENTS

MINING AND BIODIVERSITY MILESTONES

MINING AND NATURE

Throughout the mine-life cycle

- 1. Explore and identify mineral deposit (location specific)
- 2. Land-use for pit/underground, infrastructure, accommodation etc.
- 3. Use and discharge water for processing ore, groundwater management
- 4. Use energy for crushing rocks, mine vehicles
- 5. Management of biodiversity, noise, dust, waste and potentially hazardous materials
- 6. Stakeholder engagement and supporting economic development
- 7. Close mine with stable landform, soil, geochemical stability, long-term water quality and ground water management
- 8. Legacy management

Dependencies and the business case for managing impacts?

- Dependency on water
- Social & legal licence and being a responsible business

GOOD PRACTICE APPROACHES

Planning and decision-making

- Business decision-making around where to invest e.g. not to explore or mine in World Heritage Sites
- 2. Understanding biodiversity risks and impacts across a portfolio
- 3. Biodiversity baseline studies as part of environmental impact assessment
- Apply mitigation hierarchy with ambition of nonet-loss of biodiversity: avoidance, minimisation, restoration and offsetting of residual biodiversity impacts
- 5. Catchment-scale assessment of water-related risks
- 6. Optimising land-use through mine-planning

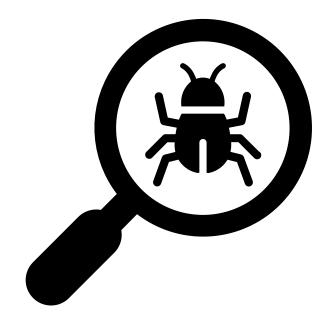
ICMM Mining Principles

Ongoing adaptive management

- 1. Biodiversity management plans and monitoring
- 2. Environmental management systems
- 3. Reduce and manage waste, tailings storage facilities
- 4. Set targets, reduce energy use and disclose GHG reductions
- 5. Innovation for low-carbon vehicles
- 6. Water stewardship and collaboration to ensure sustainable use
- 7. Planning and designing for closure, including rehabilitation, landform, soil, vegetation, water quality and waste

©ICMM

CHALLENGES


How science can help...

With effective management of biodiversity impacts

- 1. Accurate and accessible biodiversity data
- 2. Understanding species and ecological processes and their sensitivities to impacts
- 3. Common indicators for monitoring biodiversity and metrics to compare impacts across sites and businesses for biodiversity
- 4. Cost-effective technology for monitoring biodiversity

With the business-case

- 1. Enhance understanding of national or finance sector dependencies on nature, so this informs strategic land-use planning / access to finance
- 2. Strengthen capacity and tools/technology to reduce cost of strategic landuse planning by governments
- 3. Enhance understanding of nature-related risks and opportunities for meeting environmental commitments and reducing closure liability

- ICMM Mining Principles
- Mining and Protected Areas Position Statement
- ICMM Guide to Mining and Biodiversity
- <u>A cross-sector Guide for implementing the Mitigation Hierarchy</u>
- Good Practices for the Collection of Biodiversity Baseline Data
- ICMM Water Stewardship Position Statement
- ICMM Practical Guide to Consistent Water Reporting
- Integrated Mine Closure: Good Practice Guide
- Global Industry Standard on Tailings Management