DISCLAIMER

The IPBES Global Assessment on Biodiversity and Ecosystem Services is composed of 1) a Summary for Policymakers (SPM), approved by the IPBES Plenary at its 7th session in May 2019 in Paris, France (IPBES-7); and 2) a set of six Chapters, accepted by the IPBES Plenary.

This document contains the <u>draft</u> Chapter 2 NCP of the IPBES Global Assessment on Biodiversity and Ecosystem Services. Governments and all observers at IPBES-7 had access to these draft chapters eight weeks prior to IPBES-7. Governments accepted the Chapters at IPBES-7 based on the understanding that revisions made to the SPM during the Plenary, as a result of the dialogue between Governments and scientists, would be reflected in the final Chapters.

IPBES typically releases its Chapters publicly only in their final form, which implies a delay of several months post Plenary. However, in light of the high interest for the Chapters, IPBES is releasing the six Chapters early (31 May 2019) in a draft form. Authors of the reports are currently working to reflect all the changes made to the Summary for Policymakers during the Plenary to the Chapters, and to perform final copyediting.

The final version of the Chapters will be posted later in 2019.

The designations employed and the presentation of material on the maps used in the present report do not imply the expression of any opinion whatsoever on the part of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. These maps have been prepared for the sole purpose of facilitating the assessment of the broad biogeographical areas represented therein.

IPBES Global Assessment on Biodiversity and Ecosystem Services

2.3 Chapter 2.3. Status and Trends - Nature's Contributions to People (NCP)

Coordinating Lead Authors (alphabetical order): Kate A. Brauman (United States of America), Lucas A. Garibaldi (Argentina), Stephen Polasky (United States of America), and Cynthia Zayas (Philippines)

Lead Authors: Yildiz Aumeeruddy-Thomas (Mauritius), Pedro Brancalion (Brazil), Fabrice DeClerck (Belgium/France), Matias Mastrangelo (Argentina), Nsalambi Nkongolo (Democratic Republic of the Congo/United States of America), Hannes Palang (Estonia), Lynne Shannon (South Africa), and Madhu Verma (India)

Fellow: Uttam Babu Shrestha (Global Young Academy /Nepal)

Contributing Authors: Cristina Adams (Brazil), Georg K. S. Andersson (Argentina), Katie Arkema (United States of America), Dániel Babai (Hungary), Bayles Brett (United States of America), Lucia Chamlian Munari (Germany), Rebecca Chaplin-Kramer (United States of America), David Cooper (Canada/CBD), Luc De Meester (Belgium), Laura Dee (United States of America), Daniel Faith (Australia), Vicki Friesen (Canada), Christopher Golden (United States of America), Joannès Guillemot (France), Geoff Gurr (Australia), Andreas Heinimann (Switzerland), Andrew Hendry (United States of America), Finbarr Horgan (Philippines), Ute Jacob (Germany), Daniel Karp (United States of America), Amanullah Khan (Pakistan), Cornelia Krug (Switzerland), Vanesse Labeyrie (France), Mathieu Lauer (France), Deborah Leigh (Canada), Paula Meli (Argentina), Benjamin Mirus (United States of America), Zsolt Molnár (Hungary), Nathaniel Mueller (United States of America), Ahmad S. Muhaimeed (Iraq), Aidin Niamir (Islamic Republic of Iran/Germany), Megan O'Rourke (United States of America), Néstor Perez Mendez (Argentina), Andy Purvis (United Kingdom of Great Britain and Northern Ireland), Owen Price (Australia), Christina Romanelli (CBD), Matthieu Salpeteur (France), Verena Seufert (Germany), Aibek Samakov (Kyrgyzstan)

Chapter Scientist: Evelyn Strombom (United States of America)

Review Editors: Hazel Arceo (Philippines), Stanley T. Asah (Cameroon)

Contents

Executive Sum	nmary	3
2.3.1	Introduction	9
2.3.2	Nature and People Interact to Co-Produce NCP and Good Quality of Life	13
2.3.2	2.1 Co-production of NCP by nature and people	15
2.3.2	Ιθ	
2.3.2		
2.3.3	Methods for measuring co-production of NCP	23
2.3.3	∂	24
2.3.3		
2.3.4	Methods for measuring impact of NCP on good quality of life	30
2.3.4	4.1 Biophysical measures of NCP	30
2.3.4		
2.3.4		
2.3.4	4.4 Social, cultural, and holistic measurements of NCP	
2.3.5	Status and trends of NCP co-production and impact on good quality of life	
2.3.5	5.1 Global Status and Trends across NCP	43
2.3.5		54
2.3.5		60
2.3.5	5.4 Information gaps	77
2.3.6	Integrative summary and conclusions	78
References		80

Executive Summary

1. Nature underpins quality of life by providing basic life support for humanity (regulating), as well as material goods (material) and spiritual inspiration (non-material) (well established) {2.3.1, 2.3.5}. We classified NCP in 18 categories: (a) regulating environmental processes that affect filtering pollutants to provide clean air and potable water, sequestering carbon important for climate change, regulating ocean acidification, protecting soil quality, providing pollination and pest control, and reduction of hazards. For example, marine and terrestrial ecosystems are the sole sinks for anthropogenic carbon emissions, with a gross sequestration of 5.6 gigatons of carbon per year (the equivalent of some 60 per cent of global anthropogenic emissions), (b) Nature plays a critical role in providing food and feed, energy, water, medicines and genetic resources and a variety of materials fundamental for people's physical well-being and for maintaining culture. For example, the combined market value of livestock and fisheries was nearly \$1.3 trillion in 2016; more than 2 billion people rely on wood fuel to meet their primary energy needs; between 25-50% of pharmaceutical products are derived from genetic resources; and some 70 per cent of drugs used for cancer are natural or are synthetic products inspired by nature. (c) Non-material contributions, such as inspiration and learning, physical and psychological experiences, and supporting cultural identities (Section 2.3.1). Tourism to protected areas, for example, generates an estimated \$600 billion annually. Regulating, material, and non-material contributions of nature are not independent; they are linked through both positive and negative interactions. These contributions occur in the present and will also be important as conditions change into the future. Therefore, nature is essential in (d) maintaining humanity's ability to choose alternatives in the face of an uncertain future.

2. Creation of knowledge from different sources, whether indigenous and local knowledge (ILK) or from scientific organizations, have made significant contributions to NCP and good quality of life (well established) {2.3.1, 2.3.2, 2.3.3, and 2.3.4}. ILK has enhanced NCP through identification of natural medicinal resources, agriculture, and materials, and by providing a diversity of conceptualizations of nature linked to non-material NCP. ILK has contributed to learning and identity, as well as patterns of ecologically-friendly management systems within biodiversity-rich landscape mosaics that favor diversity of habitats and pollinators, fertile soils, and maintenance of future options. The scientific approaches used to assess and measure NCP have increased understanding of ecosystems, biodiversity, and their contribution to good quality of life. Scientific approaches can be grouped into six major classes, based on the particular features of each NCP: evaluation of (a) biophysical processes; (b) ecological interactions; (c) habitats and land cover types; (d) direct material use of organisms; (e) human experiences and learning; and (f) diversity of life on Earth. Greater integration of multiple knowledge systems shows promise for improving use and scaling of NCP impacts. In this chapter we performed a systematic review of more than 2000 studies of NCP trends during the past 50 years, considering knowledge from ILK as well as scientific organizations.

3. Most of nature's contributions to people (NCP) are co-produced by biophysical processes and ecological interactions with anthropogenic assets such as knowledge, infrastructure, financial capital, technology and the institutions that mediate them. However, some NCP, such as the maintenance of options from the pool of genetic diversity available on earth, are **produced with little to no human contribution (***well established***) {2.3.1, 2.3.2}.** For example, marine and freshwater-based food is co-produced by the combination of fish populations, fishing gear, and access to fishing grounds {2.3.3}. Co-production of nature's contributions changes in response to human drivers {2.3.2}. For example, conversion of vegetated land to paved surfaces or bare soil reduces the potential for natural water filtration, while management to improve the functional composition of filtering vegetation or building artificial treatment wetlands increases it. The degree to which anthropogenic assets are used in the co-production of NCP varies among and within NCP and may vary across space and time.

4. There is an important distinction between potential NCP, realized NCP, and output of coproduction (*established but incomplete*) {2.3.1, 2.3.2}. Potential NCP is the capacity of ecosystems to provide NCP, while realized NCP is the actual flow of NCP that humanity receives. For example, the extent to which vegetation filters pollution to regulate water quality (a realized NCP) depends on pollution type and levels, rates of water flow, and the filtration capacity of nature (potential NCP). Water quality (the output of co-production) depends on the relative rates of pollution and filtration as well as whether pollution feeds back to degrade vegetation and soil filtration capacity. The installation of a water filtration facility will increase the output of co-production and modify the impact on good quality of life. The distinction between potential and realized NCP highlights the importance of maintaining current biodiversity for future options.

5. Since 1970, trends in agricultural production, fish harvest, bioenergy production and harvest of materials have increased – which are 3 material contributions from nature that result in production of marketed commodities, but 14 of the 18 categories of contributions of nature that were assessed, mostly regulating and non-material contributions, have declined. The regulation of ocean acidification showed no consistent global change (established but incomplete) {2.3.5}. For example, materials such as production of industrial timber has increased to 608 million m³ in 2017 (+48% relative to 1970 levels), while its import value has increased more than six-fold (US \$2.6 billion in 1970 to US \$16.6 billion in 2017). Similarly, the value of agricultural crop production (\$2.6 trillion in 2016) has increased approximately threefold since 1970 and raw timber harvest has increased by 45 per cent, reaching some 4 billion cubic meters in 2017, with the forestry industry providing about 13.2 million jobs. In contrast, emission of air pollutants (e.g. PM_{2.5}), has increased in many parts of the globe affecting air quality. Only about a tenth of the global population is estimated to breathe clean air, leading to an estimated 3.3 million premature deaths annually, predominantly in Asia. Indicators of regulating contributions, such as soil organic carbon and pollinator diversity, have declined, indicating that gains in material contributions are often not sustainable. Currently, land degradation has reduced productivity in 23 per cent of the global terrestrial area, and between \$235 billion and \$577 billion¹ in annual global crop output is at risk as a result of pollinator loss. Moreover, loss of coastal habitats and coral reefs reduces coastal protection, which increases the risk from floods and hurricanes to life and property for the 100 million-300 million people living within coastal 100-year flood zones.

¹ Value adjusted to 2015 United States dollars taking into account inflation only.

6. The trend in the output of co-production of many NCP differs from the trend in potential NCP and realized NCP. In general, trends for potential NCP are more negative than those for output. Potential NCP has declined since the 1970s for 14 of the 18 NCP, while others show contrasting trends among proxies of the same NCP (established but incomplete) {2.3.1, 2.3.5}. For example, agricultural production (output of co-production) has been increasing worldwide, attributed in part to greater agrochemical consumption, but the capacity of nature to support food production (potential NCP), including pollination, pest control, genetic diversity for crop breeding, and the production of wild food has decreased. Furthermore, all taxa of wild crop relatives have decreased, with an estimated 16–22% of species predicted to go extinct and most species losing over 50% of their range size. Another example, as anthropogenic air or water pollution increases, nature provides more filtration (realized NCP increase), but filtration capacity is limited leading to declines in air and water quality (output of co-production).

7. Declines in potential NCP affect both current and future output of co-production and realized NCP (*established but incomplete*) {2.3.2}. The world has lost approximately 8 % of total global soil carbon stocks, reducing productivity in 23% of global terrestrial area. Similarly, lost species affect many NCP; for example, global loss of wild pollinators affects a wide range of plants, including major crops. In addition, around 20% of known medicinal species are currently threatened, affecting the large portion of the global population who rely on natural medicines as well as affecting the potential to identify new medicinal compounds. Some declines in NCP can be recovered with ecosystem restoration while other declines are irreversible.

8. Some increases in material NCP are not sustainable (*well established*) {2.3.5}. Harvests exceeding resource replacement rates reduce stocks essential for future supply in many places of the world. This includes overfishing, land expansion for conventional agricultural production, and overharvesting of natural medicinal plants and wood. In the case of marine fisheries, it is estimated that catch has been reduced by up to 36% of its potential in certain areas due to unsustainable fishing practices. This is a trade-off between present and future availability.

9. There are important interactions among NCP, including trade-offs and synergies (established but incomplete) {2.3.5}. For example, clearing of forest for agriculture has increased the provision of food and feed (NCP 12) and other materials important for people (such as natural fibers, and ornamental flowers: NCP 13) but has reduced contributions as diverse as pollination (NCP 2), climate regulation (NCP 4), water quality regulation (NCP 7), opportunities for learning and inspiration (NCP 15), and the maintenance of options for the future (NCP 18). However, very few large-scale systematic studies exist on those relationships. Indeed, the decline in pollinator diversity is challenging the production of more than 75 per cent of global food crop types, including fruits and vegetables and some of the most important cash crops such as coffee, cocoa and almonds, rely on animal pollination $\{2.3.5.2\}$. Moreover, nearly 90 per cent of wild flowering plant species depend, at least in part, on the transfer of pollen by animals. These wild plants critically contribute to most NCP. On the other hand, natural or seminatural habitat restoration (NCP 1) can benefit many NCP simultaneously, such as pollination (NCP 2), regulation of air quality (NCP 3), regulation of climate (NCP 4), regulation of freshwater quality (NCP 7), regulation of soil (NCP 8), natural hazard regulation (NCP 9), pest control (NCP 10), learning (NCP 15), and maintenance of options (NCP 18). Globally, there are important initiatives to reduce negative impacts associated with production of material NCPs.

Synergies also exist, such as those associated with sustainable agricultural practices (e.g., integrated pest management, conservation agriculture, integrated and multi-purposes agroforestry systems, irrigation management, among others) enhance soil quality, thereby improving productivity and other ecosystem functions and services such as carbon sequestration and water quality regulation – many of these synergistic opportunities, which can enhance regulating, material, and non-material NCPs, are being implemented already in 9% of worldwide agricultural land. The improvement of pollinator diversity through sustainable intensification could increase crop yields by a median of 24% {2.3.5.2}.

10. There are large differences in trends in NCP in different parts of the world (*well* established) {2.3.5}. NCP trend differently across the globe because of differences in direct drivers (Chapter 2.1), specifically deforestation and other land conversion, pollution, harvesting, invasive alien species, and climate change {2.3.5}. Because tropical and subtropical regions are undergoing the most pronounced land conversions, primarily for agriculture, potential NCP has declined most in these regions over the past 50 years. For example, deforestation in the tropics offsets the ability of tropical forests to regulate climate (NCP 4).

11. For an NCP to positively impact quality of life it must be available, accessible, and valued (*well established*) {2.3.2}. Accessibility and value depend on individual and cultural preferences, institutions, policies, power relations, location, knowledge, experience, demographic variables, and income. The impact on good quality of life depends on the location of people relative to the co-production of different NCP. Cultures may also view nature as contributing to different categories of NCP. For example, the harvest of animal or plant species may contribute to material standard of living by providing nutritious food or providing raw materials for clothing or shelter, while particular animals and plants play a central role in cultural identity or spiritual practices in certain cultures but not others {2.3.2.4}.

12. Many NCP that are co-produced in one place impact quality of life in regions far away (*well established*) {2.3.5}. For some regulating NCP, this is because their impacts are inherently global, such as climate regulation. The maintenance of future options is also a global benefit, such as in the case of drug discovery. For many NCP, however, distant impacts occur because goods are moved across the globe. Flows of resources both direct (e.g. commodities) and indirect (e.g. virtual water) can shift the burden and benefit of NCP co-production to distant communities.

13. Many of nature's contributions to people are essential for human health (*well established*) and their decline thus threatens a good quality of life (*established but incomplete*) {Section 2.3.4}. For example, there are at least four means by which NCP impact human health: (a) Dietary health - nature provides a broad diversity of nutritious foods, medicines, and clean water, including the fact that 840 million individuals lack access to enough calories, but an even larger number, 2.1 billion, fail to access sufficient food of a quality for good health of which biological diversity is a key component; (b) Environmental exposure (e.g. reduce levels of certain air pollutants), which includes the health risk associated with degradation of environmental quality, such as air and water pollution flagged as fifth and ninth in terms of global risk by the Global Burden of Disease, respectively; (c) can help to regulate disease and the immune system (i.e. exposure to communicable diseases), for example, reducing ecological

complexity and diversity concentrates disease vectors and risk, whereas diversified communities dilute risks; and (d) Psychological health through improve mental and physical health through exposure to natural areas, for example, visitation rates to national parks, or urban green spaces all suggest strong happiness or psychological well-being values associated with nature.

14. Impacts of declining NCP vary among people and geographies. Although important examples exist, a systematic assessment of impacts across social groups is not possible because studies are scarce (well established) {2.3.5}. NCP with variable impact include: (a) coastal protection: the loss of mangroves exposes coastal communities to storm damage more so than people who live inland; (b) food and medicine are more available to people in areas with little direct access, such as urban areas, and to those with market access, such as those with higher income; (c) psychological experiences: urbanization can increase isolation of people from nature by decreasing direct access and thus decrease the mental health benefits of nature; (d) pollinator loss will likely have a larger impact on human health in areas with micronutrient deficiencies, such as Southeast Asia, where 50% of the production of plant-derived sources of vitamin A requires biotic pollination {2.3.5.2}; (e) despite increasing food production, leading to production levels high enough to satisfy the caloric needs of all people on earth, around 11% of the world population is undernourished and at the same time 39% suffer from obesity; and (f) changes in pollination (NCP 2), pest regulation (NCP 10), and soils (NCP 8) are likely of greater importance for commercial farmers, while regulation of freshwater quality (NCP 7) and regulation of ocean acidification (NCP 5) are likely of greater importance for commercial fishers {2.3.5.3}. In addition, contributions that benefit some people may do so at a cost to others, such as when food production reduces downstream water quality.

15. Most of nature's contributions to people are not fully replaceable, and some are irreplaceable (established but incomplete) {2.3.2}. Loss of diversity, such as phylogenetic and functional diversity, can permanently reduce future options, such as the domestication of wild species that might be domesticated as new crops and/or-be used for genetic improvements of existing ones {2.3.5}. People have created substitutes for some other contributions of nature, but many of them are imperfect or financially prohibitive {2.3.2.2}. For example, high-quality drinking water can be realized either through ecosystems that filter pollutants or through humanengineered water treatment facilities {2.3.5.3}. Similarly, coastal flooding from storm surges can be reduced either by coastal mangroves or by dikes and sea walls $\{2.3.5.3\}$. In both cases, however, built infrastructure can be extremely expensive, incur high future costs and fail to provide synergistic benefits such as nursery habitats for edible-fish or recreational opportunities {2.3.5.2}. Substitutes for natural medicines are often financially prohibitive: an estimated 4 billion people rely primarily on natural medicines for their healthcare, mostly in lower income countries. Accounting for the wide range of benefits provided by many of NCP decreases the extent to which human-made alternatives make good substitutes. For example, hand pollination might partly replace the pollination role of wild animals for some crops, but it cannot replace pollination of wild plants nor the cultural value of pollinator species. More generally, humanmade replacements often do not provide the full range of benefits provided by nature $\{2.3.2.2\}$.

16. Studies linking co-production and impact on quality of life are scarce. For some NCP, there is a gap between what is commonly measured for the output of co-production and what is most important for impact on good quality of life. Assessing the impact on good

quality of life requires synthesis and integration across all NCP (well established) {2.3.3,

2.3.5}. Environmental sciences to date have focused on people's impacts on nature and ecosystem processes. More data is available to characterize either co-production or good quality of life, but there are few studies on the links between the two. For example, in large regions of the world, conventional agriculture is oriented to crop production that does not contribute directly to food security and nutrition (e.g. oil palm, soybean, maize or sugar cane for biofuels or industrial uses). Furthermore, while current food production largely meets global caloric needs, it fails to provide the dietary diversity, notably in fruits, nuts, and vegetables, required in a low health risk diet. Non-biophysical measures and multiples values of different user groups need to be considered in assessment of good quality of life. Integrated evaluation of good quality of life will highlight the importance of enhancing multiple NCP in the long term.

DRAFT

2.3.1 Introduction

This section reviews evidence about the current status and trends of nature's contribution to people (NCP) and highlights how changes in nature can have a profound impact on people's quality of life. NCP is defined to include both positive and negative contributions to good quality of life for which nature is a vital, but not necessarily the sole, contributing factor.

Nature contributes to good quality of life in many ways, from providing the basic life support system for humanity to providing material goods and spiritual inspiration. This section describes 18 categories of NCP that cover a wide range of direct and indirect contributions to humanity (see Table 2.3.1) (Diaz et al. 2018). These contributions include the regulation of environmental conditions such as regulation of climate, air, water, and oceans; the provision of material goods such as energy, food, medicines, and raw materials; and non-material contributions such as opportunities for learning, inspiration, and spiritual, cultural, and recreational experiences that underpin quality of life. Each NCP can contribute to quality of life in multiple ways. For example, the provision of food can contribute both to material standard of living as well as to cultural practices and social relationships. The 18 categories of NCP included here capture widely agreed contributions of nature to quality of life. Though the 18 NCP cover a wide array of values and concepts, they do not include all potential values of nature, such as the value of nature for its own sake.

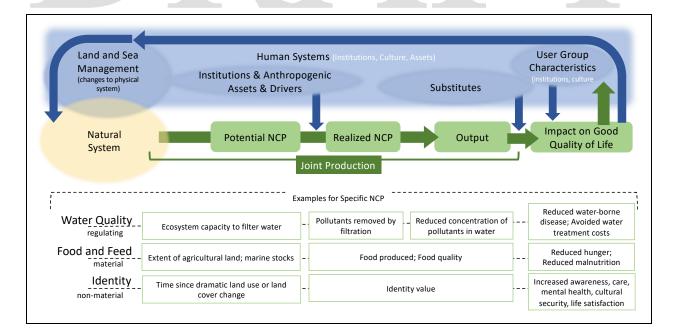

NCP Name		Brief explanation (full definition and evidence provided by NCP
		in Appendix 2)
1	Habitat creation and maintenance	The formation and continued production, by ecosystems, of ecological conditions necessary or favorable for living beings important to humans
2	Pollination and dispersal of seeds	Facilitation by animals of movement of pollen among flowers, and dispersal of seeds, larvae, or spores of organisms beneficial or harmful to humans
3	Regulation of air quality	Regulation (by impediment or facilitation) by ecosystems, of atmospheric gasses; filtration, fixation, degradation, or storage of pollutants
4	Regulation of climate	Climate regulation by ecosystems (including regulation of global warming) through effects on emissions of greenhouse gases, biophysical feedbacks, biogenic volatile organic compounds, and aerosols
5	Regulation of ocean acidification	Regulation, by photosynthetic organisms of atmospheric CO ₂ concentrations and so seawater pH

Table 2.3.1: List and definition of 18 NCP included in the IPBES Framework, adapted from Diaz et al. 2018. See also Chapter 1, figure 1.3.

6	Regulation of freshwater quantity, location and timing	Regulation, by ecosystems, of the quantity, location and timing of the flow of surface and groundwater
7	Regulation of freshwater and coastal water quality	Regulation – through filtration of particles, pathogens, excess nutrients, and other chemicals – by ecosystems of water quality
8	Formation, protection and decontamination of soils	Formation and long-term maintenance of soils including sediment retention and erosion prevention, maintenance of soil fertility, and degradation or storage of pollutants
9	Regulation of hazards and extreme events	Amelioration, by ecosystems, of the impacts of hazards; reduction of hazards; change in hazard frequency
10	Regulation of organisms detrimental to humans	Regulation, by ecosystems or organisms, of pests, pathogens, predators, competitors, parasites, and potentially harmful organisms
11	Energy	Production of biomass-based fuels, such as biofuel crops, animal waste, fuelwood, and agricultural residue
12	Food and feed	Production of food from wild, managed, or domesticated organisms on land and in the ocean; production of feed
13	Materials and assistance	Production of materials derived from organisms in cultivated or wild ecosystems and direct use of living organisms for decoration, company, transport, and labor
14	Medicinal, biochemical and genetic resources	Production of materials derived from organisms for medicinal purposes; production of genes and genetic information
15	Learning and inspiration	Opportunities for developing capabilities to prosper through education, knowledge acquisition, and inspiration for art and technological design (e.g. biomimicry)
16	Physical and psychological experiences	Opportunities for physically and psychologically beneficial activities, healing, relaxation, recreation, leisure, and aesthetic enjoyment based on close contact with nature.
17	Supporting identities	The basis for religious, spiritual, and social-cohesion experiences; sense of place, purpose, belonging, rootedness or connectedness, associated with different entities of the living world; narratives and myths, rituals and celebrations; satisfaction derived from knowing that a particular landscape, seascape, habitat or species exist

18	Maintenance of	Capacity of ecosystems, habitats, species or genotypes to keep
	options	human options open in order to support a later good quality of life.

In focusing on NCP to connect nature and good quality of life, this section distinguishes between several closely related concepts (Figure 2.3.1). There is a critical distinction between "potential NCP" and "realized NCP" (Villamagna et al. 2013, Hein et al. 2016, Jones et al., 2016). Potential NCP is the capacity of an ecosystem to provide NCP. For example, a productive marine ecosystem may support abundant fish populations, which could in turn support a vibrant fishery that provides food for human consumption. But without anthropogenic inputs such as boats and fishing gear, and time and effort invested in harvesting efforts, the NCP related to harvesting fish will not be realized. Similarly, a terrestrial system with rich soil and favorable climate could support a high-yielding agricultural crop production system, but without farm equipment and labor, crops will not be harvested. Realized NCP is the actual flow of NCP that humanity receives. Realized NCP typically depends not only on potential NCP but also on anthropogenic assets (e.g., boats and fishing gear, or farm equipment), human labor, and institutions. Institutions can facilitate or prevent access to resources and are often important for determining whether or not potential NCP generates realized NCP. For some regulating services, the degree to which potential NCP generate realized NCP depends on environmental conditions. For example, a forest or grassland may have capacity to filter pollution, but the realized NCP of pollution removal will depend on the amount of pollution coming into contact with the ecosystem. For non-material NCP, an ecosystem may have the potential to support recreation and tourism but if people do not actually go there then it will not yield realized experiences (NCP 16).

Figure 2.3.1 Differentiation of Potential NCP, Realized NCP, Output, and Impact on Good Quality of Life. The figure illustrates the relationship between potential NCP, realized NCP, output, and impact on good quality of life. Ecosystems, as altered by human management, lead to co-production of potential NCP. The combination of potential NCP along with human inputs leads to realized NCP. For some NCP, there is a difference between realized NCP and output, either because of differences between what the NCP measures and what people care about, or because of substitutes. Outputs as modulated by substitutes, institutions, and culture, impact good quality life. Information about how NCP impact on good quality of life can be used to modify human management and inputs, shown by the arrow from impact on good quality of life to the blue region that represents human systems and on the yellow region representing natural systems.

For some NCP, there is a further distinction between realized NCP and output, which occurs when what people care about differs from realized NCP. For example, the realized NCP of "regulation of freshwater and coastal water quality" (NCP 7) measures how ecosystems filter nutrients and pollutants from water. Water quality, which is what people care about, depends upon both the input of nutrients and pollutants into the water as well as water filtration provided by ecosystems. If pollution upstream increases, the realized NCP of filtration may increase even though water quality may decline. There may also be a difference between realized NCP and output because of substitutes. For example, food can be produced from natural systems and modified natural systems (e.g., agroecosystems), but food can also be produced in heavily-engineered systems, such as hydroponic production.

The final link moving from left to right in Figure 2.3.1 is between outputs and impact on good quality of life. Impact on good quality of life depends upon institutions that affect access and use, and upon culture that influences how people perceive, use, and value outputs. Human-made substitutes may influence how the output of NCP impact good quality of life. For example, high quality drinking water can be realized through intact ecosystems that filter nutrients or through human-engineered water treatment facilities. Culture and institutions also mediate the relationship between outputs and impact on good quality of life.

The arrow moving from right to left in Figure 2.3.1 illustrates how human actions influence potential NCP by altering nature via direct drivers, such as ecosystem management, land-use change, or climate change, the choice of inputs that affects realized NCP, and substitutes for NCP on good quality of life. Information about how human actions influence nature, inputs, or substitutes, and how these in turn impact NCP and impacts good quality of life, can be used to guide human management to ultimately improve quality of life.

To emphasize the intertwined influence of nature and society on the status and trends of NCP, this section uses the term "co-production" to describe how nature and people jointly determine the provision of NCP (Díaz et al. 2015, United Nations 2014). For example, a natural medicine requires both that the natural resource is available, and that people have the knowledge to

identify and use the healing properties of resources (see NCP 14). The intertwined influence of nature and society is also shown in Figure 2.3.1, with nature contributing to potential NCP and human contributions influencing both realized NCP and outputs.

The concept of NCP builds on the concept of ecosystem services (Ehrlich and Mooney 1983, Daily 1997, MA 2005). The IPBES conceptual framework (Diaz et al. 2015) of NCP and its connections to good quality of life shares many similarities with prior ecosystem service frameworks (e.g., Daily et al. 2009, Potschin and Haines-Young 2011, Guerry et al. 2015), but there are several differences in reasoning and emphasis. In comparison to the discussion of ecosystem services in the Millennium Ecosystem Assessment (MA 2005), the discussion of NCP emphasizes the central role that culture plays in defining NCP, in different conceptualizations of nature, in human-nature relationships, and in knowledge systems, especially the complementarity between scientific, indigenous, and local knowledge (Chapter 1, Diaz et al. 2018). The concept of NCP, as discussed here, also emphasizes the distinction between potential and realized NCP, with realized NCP motes that both potential and realized NCP may differ from outcomes. Much of the prior work emphasizes the contributions of nature through ecological functions that supply benefits to people without the emphasis on co-production.

Though many of nature's contributions are positive, there are also negative impacts (similar to ecosystem disservices), such as when elephants trample agricultural crops or mosquitos spread disease (Saunders and Luck 2016, Shackleton et al. 2016, Vaz et al, 2017). Some ecological interactions simultaneously provide positive and negative contributions. For example, pests feeding on plants are a disservice to food production, but ecological and evolutionary plant responses to these pests are the source of biochemical compounds that have nutritional values, flavor our foods as spices, and are used as medicines.

To support the analyses of these interrelationships, literature evaluating each NCP was evaluated as described in section 2.3.5. The rest of this chapter is divided into five subsections. Subsection 2.3.2 builds on the discussion of Figure 2.3.1 and provide greater depth on the numerous nature-human interactions on which NCP depends. Section 2.3.3 reviews the concepts and methods for analyzing the co-production of NCP. Subsection 2.3.4 reviews concepts and methods for analyzing the social, cultural, economic, and political factors that combine with NCP co-production to impact good quality of life. Subsection 2.3.5 is the heart of the chapter and reviews empirical evidence on status and trends of NCP co-production and impact of NCP on good quality of life. Subsection 2.3.6 contains concluding remarks. Detailed assessment of the status and trends for each NCP are included in Appendix 1 and 2.

2.3.2 Nature and People Interact to Co-Produce NCP and Good Quality of Life

Nature and people have always been interconnected in innumerable ways, but awareness of the global implications of such interactions has only become evident in recent decades. Earlier sections of this chapter on Drivers (Chapter 2.1) and Nature (Chapter 2.2), and Chapter 1, illustrate that the actions of people have been affecting nature in numerous and profound ways, from local to global levels. In turn, the literature on ecosystem services and the NCP framework used here focus on the many ways that nature contributes to good quality of life. These efforts to understand the contributions of nature to people fit into a larger context. Literature on socialecological systems (Berkes et al. 1998, Folke 2006) and coupled human and natural systems (Liu et al. 2007) have emphasized the co-dependence and co-evolution of people and nature in integrated, complex systems composed of both social (human) and ecological (biophysical) elements. They highlight the feedback between people and nature that shapes both. The importance of these feedbacks has become increasingly apparent as we become aware of the global scale-impact of human activities. Human actions are not only a major driving force of environmental change but the source of change in earth system functioning (Crutzen 2002), which in turn increasingly affects important aspects of local quality of life (Steffen et al. 2015, Ellis 2018).

Co-production of food and feed (NCP 12), particularly crop and animal domestication, provides a clear example of the interconnections of nature and people. Domestication is based on an interactive process: wild plants and animals influence human understanding, and people select and domesticate plants and animals (Larson and Füller 2014, Olsen and Wendel 2013). People have selectively bred and dispersed species that have subsequently evolved separately from their wild relatives, allowing agriculture to flourish while fundamentally reshaping human societies and their environment (Stépanoff and Vigne 2018). The process of co-production uses and creates learning and transmission of knowledge (classifying and naming nature elements, management), experimentation (identifying agronomic or nutritive properties), and decision making (selection of useful traits) (Larson and Füller 2014, Stépanoff and Vigne 2018). Knowledge and practices from IPLCs have contributed greatly to domestication and food production; a wide diversity of crop varieties and animal landraces have been developed locally by IPLCs (Altieri et al. 2015). Institutions and governance play a critical role in how crop varieties and knowledge about them are transmitted, and, in turn, these institutions have been shaped by domestication and food production. Institutions and governance range from reciprocity networks based on social exchange and interaction (Coomes et al. 2015, Pautasso et al. 2013) to gene editing technologies so new that regulatory frameworks about ownership have not vet been created (Wolt et al, 2016).

The current state of nature is an important, but not the sole, determinant of quality of life (Guerry et al. 2015, Joly 2014, Raudsepp-Hearne et al. 2010a). In fact, most contributions from nature to good quality of life derive from interactions between nature and people, including the use of various types of anthropogenic assets, along with the institutions that govern their access, use,

and distributive benefits (United Nations 2014). Anthropogenic assets include built infrastructure, machinery, and structures, as well as knowledge (including indigenous and local knowledge systems, technical or scientific knowledge, formal and non-formal education, and experience), technology (both physical objects and procedures), and financial assets. Governance institutions, cultural and spiritual beliefs, and practices can also influence and shape NCPs.

Fisheries provide a good example of the complex interactions of nature and people that determine the impact of nature's contribution to good quality of life. The contribution of a fishery to the quality of life of a coastal community depends on interactions between fish abundance, local fishing assets, and the institutions setting rules and norms for access and distribution of fish. Fish abundance itself depends upon the health and productivity of marine and coastal ecosystems and on past fishing activity that impacted marine and coastal habitats and the abundance, diversity, and evolution of fish populations and communities (e.g. Schindler et al. 2010, Berkes 2012). In addition to fish abundance, the contribution of the fishery to quality of life depends on the effort, knowledge, and experience of the fishers, their fishing equipment (boats, nets), and their economic organization and culture that helps to determine the value and importance of the fish harvest to the community. In addition, institutions and governance that determine access and distribution of benefits play a key role in ensuring long-run sustainability of the fishery and the community (Ostrom 1990, Costello et al. 2008, Gutiérrez et al. 2011). Some of the important roles that institutions play are listed in Table 2.3.2.

Provide rules regulating property rights for users, management rights, and distributive benefits	Define forms of sanctions and conflict resolution mechanisms
Spread costs	Bring together social, financial, and institutional resources
Achieve economies of scale	Determine needs on a broad scale
Attract expertise	Assess risk
Achieve competence	Apportion and augment NCPs
Perform oversight and resource monitoring	Perform quality control
Set prices for non-market goods	Maintain and improve infrastructure
Address non-market social needs	Guiding private enterprise/markets

Table 2.3.2 Examples of the Functions of Institutions

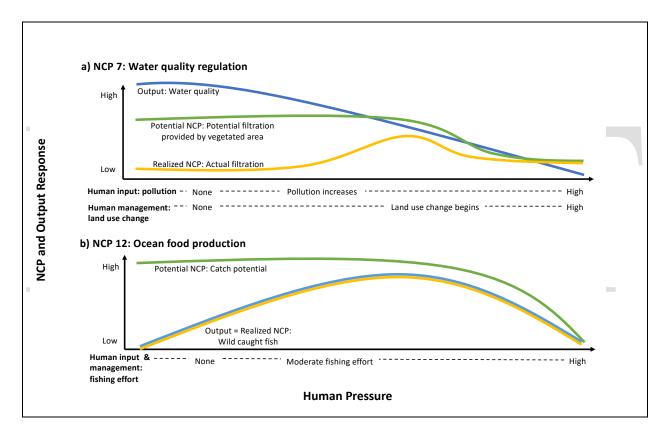
2.3.2.1 Co-production of NCP by nature and people

Co-production describes how nature and human management combine to make various NCP available. While acknowledging the critical role of abiotic factors such as topography and climate, the focus here is on the contribution that living nature makes in affecting the availability of NCP.

Human management that affects ecosystems offers a rich set of options for maintaining and improving the co-production of NCP. Such management practices include ecosystem restoration, moderating human actions to be less destructive of ecosystem processes important in the coproduction of NCP, and biodiversity-rich agroecosystems that maintain ecological processes. Management actions can also facilitate and enhance co-production of NCP, such as adding filter strips between farms and waterways, designing agricultural systems that maintain crop evolutionary processes and high level of associated biodiversity, replanting grasses to stabilize sand dunes, and xeriscaping. Human management can benefit by borrowing ideas from nature and using them in different applications, such as installing green-roofs, use of chemical compounds from nature to produce new medicines, or the invention of new products through biomimicry. However, some human actions, such as emissions of air and water pollutants or conversion of natural habitat for human dominated land uses, negatively impact ecosystem processes and damage or degrade the potential for providing NCP. Such negative impacts may be the unintended consequences of human actions, but often they result from decisions favoring some types of contributions at the expense of others. Specific outcomes or activities are often privileged, and in producing those outcomes others may be negatively affected, often those which are diffuse, less valued culturally or economically, or valued by a less powerful group of users. For instance, a given constituency may live with high levels of pollution or deforestation in exchange for increased revenue from commodity crops or increased industrial employment, even if pollution and deforestation affect large sectors of society and limit future opportunities.

Changes in nature affect the co-production of NCP through a variety of pathways. Conversion of habitat (e.g. deforestation), land use patterns (e.g. fragmentation resulting in smaller forest patches), and changes in human use (e.g. increase in hunting animals or gathering plants) all affect the co-production of NCP. For example, above-ground carbon sequestration for climate regulation (NCP 4) is primarily a function of vegetation biomass, so changes that affect biomass affect climate regulation (Pregitzer and Euskirchen 2004). Change in NCP co-production may occur even if human management is low-impact; footpaths can be the most active runoffgenerating feature of inhabited montane landscapes (Harden 1992), potentially affecting the regulation of water flow (NCP 6). Some NCP are highly dependent on specific species or communities. Co-production of food (NCP 12), for example, requires specific edible and appealing species (e.g. grapes for wine production) and genetic diversity (e.g. different varieties of grapes) for dietary, cultural, and economic reasons.

There is considerable diversity in how different groups integrate ecosystem processes with human actions to co-produce NCP. Many indigenous and non-indigenous societies (Indigenous Peoples and Local Communities, IPLCs) consider themselves to be integrated elements of nature and nature as an integrated element of culture (Descola 2013, Sanga and Orteli 2004). Because IPLC territories represents ~38 million km², over a quarter of the world's land surface (Garnett et


al. 2018), IPLC-managed landscapes generate many and diverse NCP. Other social groups, such as farmers and herders in both high and low-income countries, depend closely on nature but may vary in their interactions with nature in their level of use of anthropogenic assets, particularly technology. At the other end of the spectrum, there are many groups whose livelihoods depend only indirectly, albeit equally fundamentally, on nature and whose local environment is largely transformed by human interventions, such as many urban dwellers, who depend on the continuous, mostly external, flow of water and food.

There is substantial interaction among NCP, as they are often jointly produced. Tradeoffs among NCP co-production can occur when exploitation of one NCP changes nature in such a way that other NCP are negatively affected. For example, conversion of forests or grasslands to cultivated cropland increases food production (NCP 12) but can reduce carbon storage (NCP4), change water distribution and quality regulation (NCP 6 & NCP 7), and reduce pollination (NCP 2) and pest control (NCP 10), negatively affecting agriculture itself (Power 2010). Agricultural intensification may also negatively impact the diversity of resources, which reduce ability to learn from nature (NCP 15) and will tend to reduce options for future use (NCP 18). Synergies also exist, such as co-production by urban parks of storm water control (NCP 6 & NCP 7), reduction of the urban heat island (NCP 4) and improved mental health (NCP 16) (Keeler et al. 2019).

For some NCP, whether an increase in a measure of co-production is good or bad tends to be consistent across user groups. Increased regulation of pests (NCP 10) benefits agriculture and reduces vector borne disease. For other NCP, whether an increase is desirable or not depends on conditions and on who the beneficiaries are. Natural infrastructure that reduces downstream flooding (NCP 6), for example, might be positive if damage to streamside homes is decreased but negative if floodplain agriculture is starved of sediment and nutrients delivered by flood waters. The effectiveness of NCP co-production should be evaluated in comparison to the co-production of NCP under an alternative landscape or management approach (Brauman 2015). For example, in a vulnerable geography, a large storm will cause a storm surge regardless of the condition of coastal habitat, but differences in the severity and extent of flooding could be attributed to intact mangroves or seagrass beds (NCP 9) as well as to the distribution of human assets (Arkema et al, 2017).

Co-production of both potential and realized NCP change in response to human drivers (Figure 2). For example, conversion of vegetated land to paved surfaces or bare soil reduces the potential for natural water filtration (NCP 7), and management to improve the functional composition of filtering vegetation or building artificial treatment wetlands increases the potential NCP. Realized NCP changes in response to both potential NCP and human inputs. For example, if there is little pollution in water, vegetation removes very little pollution, and so the realized NCP of actual water filtration is small. As the human input to water pollution increases, so does filtration, but

only to a point (Smith et al. 2003, Bouwman et al. 2005 – see Appendix 2 - NCP 7). Changes in the output, water quality, are a function of both changes in land management that change the potential of a landscape to filter water and changes in human inputs of pollution. Even if realized water filtration is large, pollutant loads could still overwhelm filtration capacity, leading to low quality water. Similarly, for provision of food from the ocean (NCP 12), potential catch is a function of ocean productivity, which is related to both the natural system and human management including fishing itself. Realized catch of wild fish changes with both potential catch and the amount of fishing effort. Realized catch increases with fishing effort but decreases as overfishing causes the potential NCP to decline. In this case, output and realized NCP are the same – amount of wild-caught fish (see Appendix 2 - NCP 12).

Figure 2.3.2 Response of Potential NCP, Realized NCP, and NCP Output to External

Pressures. Examples of changes in local co-production of potential NCP, realized NCP, and the output as human pressure increases. In a), pollutant load increases from left to right, as does land use change. The potential of nature to filter water (green line) decreases as people convert vegetation. Realized water filtration (yellow line) is low at the left, because there is no pollution to filter. As pollution increases, realized water filtration increases. As land use change decreases potential filtration, realized filtration also decreases. Eventually land use change ceases; water quality continues to decrease as pollution increases because realized filtration has saturated. Extremely high pollution loads could also degrade the potential NCP. In b), fishing effort increases fish catch, which is both the realized NCP and the output. As fish catch increases, catch potential, the potential NCP, decreases, and realized NCP drops as a result.

2.3.2.2 Anthropogenic substitutes for NCP

Anthropogenic substitutes for NCP are human-created or human-mediated processes that provide alternative ways to satisfy human needs and desires that partially or completely replace an NCP. For example, water filtration facilities can substitute for water purification provided by ecosystems (NCP 7) in providing clean drinking water (e.g., Ashendorf et al. 1997, NRC 2000). Substitutes could replace the NCP of pollination (NCP 2), such as when hand pollination replaces wild pollinators (Garibaldi et al. 2013). Substitution for pollination could also entail replacing agricultural crops that require animal pollination with crops that do not. A good substitute for an NCP is characterized by its ability to match or exceed the contribution of the NCP, including consideration of changes in access and redistribution of benefits across different user groups, without incurring additional cost. What may be a sufficient substitute for some, for example artificial flavors and fragrances, may result in a significant loss in the contribution to good quality of life for others with different cultural values and preferences.

For some NCP, there may be no good substitutes. 'Critical natural capital' is comprised of components of nature that contribute to good quality of life for which there are no good substitutes so that loss of these components necessarily implies a decline in quality of life (Ekin et al. 2013). For example, the loss of a forest or other natural habitat might cause a loss of identity or sense of place for people for whom the forest had special meaning or significance (Plieninger et al, 2015; Olwig et al, 2004). Even when substitutes exist, they may be imperfect or impose significant costs. For example, loss of nutrient filtration capacity of ecosystems may require expensive water filtration facilities downstream to provide clean drinking water (Chichilnisky and Heal 1998, NRC 2000). In the design of new drugs, use of natural compounds known to be active in traditional medicine can be a more efficient starting place than invented de novo compounds (Newman and Cragg 2012).

Imperfect substitution may arise because components of nature jointly contribute to multiple NCP. Human-engineered substitutes can often be designed replace a narrowly defined function of nature, but these may fail to replace all natural functions that contribute to a range of NCP. For example, declines in wild pollinators have impacts on plants well beyond crops and may cause declines in plant species that depend on pollination as well as other species that depend on those plants (Brodie et al, 2014; Potts et al, 2016).

Recognizing that the future may be different from today in surprising ways argues for preserving options for the future (NCP 18). A precautionary approach to ecosystem manipulation is often the best way to maintain a full array of potential and realized NCP. The future co-production of NCP may depend on the maintenance of current genetic and evolutionary diversity within and among species.

2.3.2.3 Impact of NCP on good quality of life

The impact of NCP on good quality of life depends both on co-production, which determines the availability of NCP (reviewed above), and on numerous cultural, social, economic, political, and institutional factors that determine how NCP are accessed and utilized and their importance and value to people. Even with the same access to NCP, the impact on good quality of life may be quite different for different groups of people. Groups with different culture, history, experience, education, income, or other factors may use and value NCP quite differently (e.g., Pascual et al. 2017, Diaz et al. 2018). Different cultures may also view nature as contributing to different categories of NCP. For example, the harvest of animal or plant species may contribute to material standard of living by providing nutritious food or providing raw materials for clothing or shelter, while particular animals and plants play a central role in cultural identity or spiritual practices in certain cultures but not others.

Distribution among groups in society

An important question in discussing the impact of NCP on good quality of life is impact on whom. Though overall trends in NCP, and the aggregate value of NCP, are important for policy-making, understanding the distribution of impacts of NCP on the quality of life for different social groups is critical to address social justice concerns (McAfee 2012, McDermott et al. 2013, Adekola et al. 2015). Nature's contributions affect major social groups in different ways, with some specific contributions being much more important for some groups than others. For example, changes in pollination (NCP 2), pest regulation (NCP 10), and soils (NCP 8) are of greater importance for commercial farmers, while regulation of freshwater quality (NCP 7) and regulation of ocean acidification (NCP 5) are of greater importance for commercial fishers. For many combinations of NCP and major social group there is considerable heterogeneity of impacts by region, and even for different groups even within the same region (e.g., different income classes or ethnic groups).

Impact on good quality of life may occur far from where an NCP is co-produced, and preferences and governance in distant societies may affect co-production. Globalization and trade moves goods that are co-product in one region to consumers around the globe. People living in urban areas rely on food, materials, and medicinal products (botanical medicines) that are produced or grow naturally thousands of miles away. Global nature tourism influences the management of some nature conservation areas. Demand from far away can increase pressure on ecosystems and have detrimental impacts on the local environment and on co-production of NCP (Chi et al. 2017, Wolff et al. 2017). A number of recent analyses study the environmental impacts of trade by tracking the carbon embedded in traded goods (e.g., Davis and Caldiera 2010, Peters et al. 2011, 2012, Sato 2014) or the amount of water embedded in traded goods (e.g., Allan 2003, Hanasaki et al. 2010, Dalin et al. 2012). Flows of resources both direct (e.g. commodities) and indirect (e.g. virtual water) can shift the burden and benefit of NCP co-production to distinct

communities (MacDonald et al, 2015). Other linkages between co-production in one region and impact on quality of life occur because of environmental interconnections. For some regulating NCP, impacts are global, such as climate regulation (NCP 4). For other NCP there are important impacts downwind (air quality regulation, NCP 3) or downstream (water quantity regulation, NCP 6, and water quality regulation, NCP 7).

The way people benefit from nature depends on where and how they live and how institutions support or inhibit access to NCP. Though overall trends in NCP, and the aggregate value of NCP, are important for policy-making, understanding the distribution of impacts of NCP on the quality of life for different social groups is critical to address social justice concerns (McAfee 2012, McDermott et al. 2013, Adekola et al. 2015). Knowing how changes in NCP differentially impact disadvantaged social groups, such as subsistence harvesters in tropical forest regions or low-income peri-urban residents, can help devise more effective strategies for poverty alleviation. Disadvantaged groups in regard to NCP refer to those groups who have less access to nature and to different types of anthropogenic assets (i.e. forms of capital: natural, human, manufactured, social, financial capital) that allow them to benefit from nature. The distribution of NCP strongly affects the quality of life of disadvantaged social groups in societies with strong power asymmetries. For this reason, a greater disaggregation of social groups to better understand the distribution of NCP is needed, particularly where levels of inequality are high (Daw et al. 2011).

Factors leading to unequal distribution of NCP include geographic location, nearness of nature, social status hierarchies and power relations, property and access regimes, and availability of anthropogenic assets needed to co-produce NCP. Property and access regimes are types of institutions with strong influence on NCP distribution. Recent research has emphasized the multiple mechanisms by which social groups gain access to nature and benefit from NCPs, beyond formal institutions, notably property rights (Cole and Ostrom 2012). Whether land is either or a combination of private, public or common property, rights interact with the biophysical context to shape basic access to nature and NCPs. Furthermore, social groups may gain complementary access through their differential ability to access anthropogenic assets such as knowledge and technology, and different groups have varying power to impose their choices, such as the ability of influential groups to modify institutions (Ribot and Peluso, 2003). This in part explains why formal and informal institutions ("rules-in-use") often work against disadvantaged groups and limit how much these groups can benefit from nature (Seghezzo et al. 2011).

A spatially explicit analysis of NCP along with access rules and infrastructure can help to identify which groups will likely benefit the most from co-production of NCP. Some analyses have linked provision of NCP to beneficiary groups (e.g. Bagstad et al. 2014). It is important to note that human use of ecosystems creates feedbacks that modify landscapes and affect the availability and accessibility of NCP beyond immediate users and for the future. Knowing who

wins and who loses due to changes in the co-production of and access to NCP, and the mediating role of institutions and governance regimes, is a highly policy-relevant area of research that requires strong interdisciplinary science.

Characteristics of user groups mediate the impact of NCP on good quality of life

A fully developed analysis of the impact of NCP on good quality of life would report on the consequences for specific user groups. User groups could be based both on livelihoods (subsistence gatherers, subsistence and commercial farmers, subsistence and commercial fishers, pastoralists, commercial ranchers, commercial foresters, mining, energy production, commercial and manufacturing), as well as residence location (rural, semi-urban, urban, coastal, inland, forest, grassland, desert, etc.). Studying the impacts of NCP on quality of life, as well as doing so by major user group, is still a relatively new area of research. There are many gaps in our knowledge base and information to report on trends by users group is quite limited for many NCP. Though this was the initial goal of this assessment, there was insufficient evidence reported in the literature at present to support a comprehensive and systematic reporting of the impacts of NCP on good quality of life by different user groups.

Issues in aggregating data and information on NCP across and within groups

A global level assessment requires aggregate information. For NCP, 'aggregation' refers to assessing the benefits of NCP to a large group without explicit recognition of distributional patterns of benefits within the group. Reporting the aggregate monetary value of NCP at a national or global level contains useful summary information and can be helpful for seeing broad scale trends. However, reporting aggregate value also hides information about distribution of NCP impacts among groups and be poor indicators of the contribution to poverty alleviation (TEEB 2010). Similarly, national aggregate indices of income (such as gross domestic product [GDP]) do not address inequality variations in income and do not give proper attention to the condition of the poorest members of society (Ravallion 2001, Piketty 2014). Likewise, value reporting tends to overlook non-material NCP that are difficult to express in monetary terms.

One potential approach to taking account of distributional concerns but retaining the benefits of aggregation is to use equity weights that assign different values to different groups based on their relative wealth. Equity weights place a higher value on benefits to disadvantaged groups. Use of equity weights in climate change give greater importance to climate impacts in low-income countries (e.g., Anthoff et al. 2009, Azar and Sterner 1996). To date, the literature on NPC has not used equity weights to analyze distributional consequences of changes in NCP. In general, there is a great need for analysis of NCP to take greater account of the distribution of impacts.

Distribution over time and discounting

Many changes to ecosystems have long lasting effects that can affect the flow of NCP for both current and future generations. Consideration of NCP values that occur in the future raises the issue of how to compare present versus future values. A standard approach in economics to questions of aggregating values over time is to use discounting but discounting for long-run environmental issues that affect quality of life for future generations also raises a host of ethical issues (Portney and Weyant 1999, TEEB 2010). The simplest and most common form of discounting is to use a constant exponential discount rate. However, many critics of discounting think that it puts too little weight on future values, especially those that occur in the distant future. A second issue with discounting is the lack of clarity on what discount rate should be used, as even slight differences in discount rates matter hugely. For example, the value of \$1 million 100 years in the future is worth \$6.7 thousand at a 5% discount rate but only \$0.045 thousand at a 10% rate. Suggestions for discount rates range from greater than 10% for risky business investments to less than 1% for long-term investments in public goods that affect everyone. Several prominent economists have recommend using very low discount rates for projects with long lasting environmental impacts (e.g., Weitzman 1998, Stern and Taylor 2007) but other prominent economists have argued for use of much higher rates that are closer to market interest rates (e.g., Nordhaus 2007a,b). Most value estimates reported in section 2.3.5 are for the current value of NCP so discounting is not an issue. However, the issue is very important for management and policy decisions that affect the long run, such as with climate change or habitat protection policies.

Another issue is that the future NCP are not likely to be simple extrapolations of present NCP. For instance, elements of biodiversity might not provide an NCP in the present but may provide important contributions to good quality of life in the future. Such notions are at the heart of option value (NCP 18). Changing values, knowledge, and conditions, mean that NCPs provided by the preservation of current biodiversity may only become apparent in the future.

2.3.3 Methods for measuring co-production of NCP

Measurement of the co-production of NCP varies across studies and among NCP, as NCP are often evaluated in ways most relevant to their local context (Díaz et al. 2018). For many NCP, studies of related biophysical or social phenomena exist but must be re-interpreted to evaluate their implications to NCP co-production. For example, the field of landscape hydrology is well developed but has generally focused on runoff prediction under various weather regimes, not specifically on the role of vegetation in regulating water flow (Brauman et al. 2007). Similarly, much existing work in agronomy measures phenomena such as pollinator diversity or density without measuring the contribution of pollination to people, such as its impact on yield or nutritional value (Potts et al. 2016). Even fewer studies consider interactions between multiple NCPs (TEEB AgriFood, 2016).

The impact of most NCP can be measured by ILK-based methods in addition to scientific approaches. Biocultural indicators simultaneously measure nature as well as practices associated with nature (e.g. species used for medicine, crops and their dietary roles, a forest and its role in protecting water sources). These indicators reflect how people benefit from nature for their wellbeing but also how humans contribute to ecosystem health or well-being (Sterling et al. 2017). These indicators also reflect how IPLCs engage in learning processes that contribute to co-production of NCPs through knowledge generation (e.g., about the behavior of animals with importance as food, or changes in crop phenology that indicate climatic changes, or the development of crop varieties or landraces). These methods apply across all NCPs and are addressed below in stand-alone section 2.3.3.2 to highlight the potential use of ILK to measure NCP.

Chapter authors systematically evaluated how co-production of NCP is measured following guidelines for systematic review (Center for Environmental Evidence, 2013). Authors summarized theory of NCP co-production for each NCP in Section 2.3.3.1 (below) and in Appendix 2. Below, we group our findings about the approaches used to assess and measure NCP co-production in the literature into six major classes of scientific research and six approaches based on ILK.

2.3.3.1 Scientific approaches to measuring NCP co-production

Based on review of the literature on NCP and the biophysical and social processes that go into their co-production, we summarize six general approaches to measuring co-production of NCP.

- i. *Biophysical processes*: Regulating NCP describe the influence of ecosystems and their biological constituents on biophysical processes that influence good quality of life. Direct measures of regulating NCP are usually difficult, as abiotic factors interact in the co-production of many regulating NCP. It is, however, often possible to measure specific biophysical processes important for NCP supply. These include measurement of air pollutants deposited on plant surfaces (NCP 3); carbon sequestered in growing forests (NCP 4) and algae (NCP 5); water transferred to the atmosphere or to aquifers by plants (NCP 6); changes in water quality attributable to filtering by riparian forests (NCP 7); the rate of soil erosion with and without vegetation (NCP 8); and root density that may stabilize rocks and soil on steep slopes (NCP 9). Models are frequently used to scale up local studies of biophysical processes and to integrate biophysical processes with other factors important for generating NCP.
- ii. *Ecological interactions*: Some NCP are the outcome of ecological interactions, such as fruit and seed setting (NCP 2) and disease prevalence and crop damage (NCP 10); their production can be assessed based on the abundance and diversity of organisms involved in coproduction, e.g., pollinators and seed dispersers (NCP 2); or pests, pathogens, predators, and

competitors (NCP 10). These NCP can also be measured by the outcome of the ecological interaction. For example, the amount and quality of pollen deposited on the stigma (NCP 2) could be measured, as could impacts of pests in the presences of natural enemies (NCP 10). Outputs of co-production may also be evaluated, such as enhanced crop production (NCP 2) or reduced food waste (NCP 10).

- iii. *Habitats and land cover types*: For many NCP, the presence of a specific habitat or land use type is interpreted to mean that an NCP is being co-produced. For example, hedgerows and forest fragments alongside farms are assumed to provide pollination (NCP 2) and riparian buffers to provide water filtration (NCP 7). Assumptions about land cover functionality are generally extrapolated from local studies that measure a biological process or identify particular organisms or the outputs of ecological interactions.
- iv. Direct material use of organisms: Material NCP are based on the direct use of organisms to provide for material human needs. Material NCP include bioenergy (NCP 11); food (NCP 12); materials (NCP 13); and medicine (NCP 14). Realized material NCP can be directly measured through the amount and quality produced or consumed; potential NCP can be measured as the extent and suitability of land, freshwater, or marine areas for production, as well by the diversity of organisms with potential use for material human needs.
- v. *Human experience and learning*: Non-material NCP stem from the interactions of people with material and non-material elements of nature. Measures of the interactions between people and nature, such as proximity of people and nature in everyday life (NCP 15), tourism and recreation in outdoor areas (NCP 16), or customary or ritual use of sacred sites (NCP 17), are one way of quantifying them. Proxies may also be used, such as the economic value of patents resulting from bio-based innovations (NCP 14), the use of bio-inspired materials (NCP 15), co-existence of cultural (linguistic) and biological diversity (NCP 15), investments in equipment for outdoor activities (NCP 16), and time since major land use change (NCP 17). These proxies are not thought to be representative but represent early attempts to quantify non-material NCP.
- vi. *Diversity of life on earth*: A diversity of organisms and ecosystems are required to coproduce NCP. Diversity can be assessed using metrics such as phylogenetic diversity and intra-specific diversity to quantify biological variation that underpins the provision of options for the future (NCP 18).

NCP measures are relatively consistent in some cases (e.g., NCP 4 carbon sequestration), but for many NCP there are no globally consistent data on which to base estimates of status and trends (Crossman et al. 2013). Specific methods for assessing NCP are still evolving, tend to be locally relevant, and as a result are often difficult to compare globally (Díaz et al. 2018). Measurements of regulating NCP are inconsistent among studies and thus difficult to compare (Ricketts et al. 2016). For material NCP, measures of realized co-production are more robust, largely because many associated NCP have sales and trade data, though these may not reflect NCP co-production

important to IPLCs and other marginalized or less visible communities. Moreover, these data do not provide information about potential NCP because they fail to reflect unsustainable resource harvest or NCP quality (Hein et al., 2016). For non-material NCP, qualitative approaches assessing human experiences and learning from nature are deeply informative and are generally locally specific and highly contextual, again making comparison among studies difficult (Milcu, 2013, Daniel 2012, Pascua 2017, Satz et al., 2013). At the global level, non-material NCP are often measured by proxies representing the state of nature that contributes to experience and learning, such as extent of high biodiversity landscapes or existence of sacred sites (Berkes 2012,Garnett et al. 2018, Verschuuren et al. 2010).

2.3.3.2 Indigenous and Local Knowledge approaches to measuring NCP co-production

Indigenous Peoples and Local Communities have long histories of observation, experimentation, prediction, testing, investigating causality, and interpretation and explanation (Cahete 2000). The Worldwide Indigenous Science Network remarks "Indigenous researchers are an integral part of the research process and there is a defined process for ensuring this integrity" (Worldwide Indigenous Science Network, 2019). In general, indigenous practice emphasizes relational accountability to other people and to living and nonliving things; making connections and understanding systems as a whole, including spiritual components, rather than through deconstruction into constituent parts; and seeking balance with the natural world rather than controlling it (Tengo et al. 2017, Toledo 2001). Relationality is the idea that relationships form reality, and relational accountability can be put into practice through choice of research topic, methods of data collection, the form of analysis, and the presentation of information (Wilson 2008). In contrast to dominant science practices in which researchers stand outside the system as impartial observers, indigenous and other science perspectives acknowledge that there is an inextricable relationship between knowledge and the people and processes that produce it. This means that ILPC have unique insight into NCP, not only because they may have knowledge of NCP that differs from scientific approaches but also because they understand the co-production and impact of NCP differently. This has led to many studies showing that it is important to protect indigenous and local knowledge of NCP, the people themselves, and their ways of life if NCPs are to be maintained (McGregor, 2004; Friedberg 2014).

To measure NCP from an IPLC perspective, data about ILK of NCP co-production must be collected. This is done in a variety of ways, including ethnographic research, participatory mapping, experimental economics, and social surveys (Alcorn 1995, Ding 2016). Different types of dialogue workshops such as the America, Asia-Pacific, Europe and Central Asia, and Africa dialogues (IPBES 2017), organized around IPBES assessments, have contributed to bring some of this knowledge to the assessment process through inviting a large set of representatives of IPLCs and researchers working jointly with the latter, and through facilitating a "direct" process of integrating their views and processes. Other sources of ILK measures of NCP has been conveyed in the scientific literature, scholarly and popular texts, and in reports by NGOs

working with IPLCs. Broader recognition of the importance of ILK in environmental management, although greatly improved since the onset of the Convention on Biological Diversity in 1992 (article 8j), is still emerging. Global level syntheses of ILK contributions to coproduction of NCP are scant because ILK is place-based and embedded in local cultural perspectives, so scaling up is challenging. However, integrating ILK with scientific approaches has allowed some important aspects of ILK to be upscaled. For example, although traditional agroforestry systems are locally based, global data mapping agroforestry systems across the planet (Zomer et al. 2009) makes it possible to quantify the extent and impact of such practices at the global level. IUCN, through a process of dialogue and also systematic mapping, has produced global maps showing the diversity of sacred sites (Verschuuren et al. 2010). Other examples include the management of regionally-relevant watersheds (Critchley et al, 1994; Tsasaros et al. 2018, Wilson et al. 2018) and the maintenance of agrobiodiversity of regionally and globally important crops and animals (Howard, 2010; Veteto and Skarbo, 2009).

ILPCs communicate their understanding of NCP co-production in a variety of ways, including:

Nomenclature: Names used in ILK designate species and intraspecific species diversity. i. Names communicate information about material NCP, their diversity and distribution across landscapes (e.g., crop diversity), and about non-material NCP, such as learning (e.g., phenology of each crop and its capacity to face water scarce situations, the names of specific pollinators and the species they prefer (Simenel et al. 2017), and predators of specific fruit trees). Compiling nomenclature can generate understanding of habitat intactness, distribution of a resource across a landscape, capacity of the latter to face risks and hazards, and drivers of change. Local lexicon may differentiate types and categories, for instance of food, medicines, and materials, and may also provide cues identifying species that are genetically distinct (learning NCP 15), have distinctive nutritional or medicinal qualities, or prefer a given environment. Work with local specialists, such as traditional healers, can provide precise information on threats to useful medicinal species (e.g. Ghimire et al. 2008) and the drivers of change, specific areas that are more vulnerable, and species that are more vulnerable in relation to specific harvesting practices (Ghimire et al. 2008). Linguistic analysis can indicate changes in biodiversity, including long-term changes. For example, reference to specific species in narratives and oral traditions in places where those species no longer exist indicate extinctions, and in some places this ILK indication of extinction has been associated with physical evidence of the loss of megafauna. Such evidence crosschecked with archeozoological archives and thorough linguistic analysis show that data from local narratives indeed correspond to periods of loss of megafauna as well as changes in human practices (Wehi et al. 2018). ILK nomenclature also provides information about exchanges between proximate and distant social groups. For example, the pre-Columbian transfer of sweet potato varieties to the Pacific Islands by Amerindians from South America, was first established by linguists using IPLC terminologies who identified Quechua names

used by Pacific peoples, a first finding that eventually led to scientific hypotheses tested genetically (Roullier et al. 2013).

- ii. Narratives: Narratives that relate the status of connections between plants, animals, fungi or soil microorgaisms in ILK are a measure of biotic interactions which are often critical to the co-production of NCP. The narratives relate how connections are effectively favored or used to identify functional roles of species directly or indirectly useful to people. These narratives generally link to co-production systems such as trees with symbiotic endomychorhizes or echtomichirzhes with fertilization roles on soils or that increase availability of carbon and water for the trees, and wild pollinators recognized for their specific roles (Couly, 2009, IPBES 2016). Similarly, in the Mediterranean, biotic interactions between trees and ectomycorrhiza are understood through observation of the "brulé", a barren area located at the base of trees that host truffles, illustrate learning from nature (NCP 15) (Aumeeruddy-Thomas et al. 2017). Narratives of infrequent events also provide a measure of hazards and the contribution of nature to mitigating hazard impact. These narratives collect observations of nature and NCP and transmit this information intergenerationally, a process that contributes to learning as well as mitigating hazards. For example, IPLCs in the Indian Ocean region drew from traditional myths and oral history about past tsunamis to identify ways in which nature helped mitigate tsunami impact and thus survive a recent disaster (Adger et al. 2005, McAdoo et al. 2006, Arunotai 2008). IPLCs narratives about ways nature can be managed to reduce the impact of past shocks include not only tsunamis (Becker et al. 2008, McAdoo, Moore, and Baumwoll 2009, Lauer 2012, Walshe and Nunn 2012); but also fire (Bradstock, Williams, and Gill 2012); extreme weather (Janif et al. 2016); cyclones (Yates and Anderson-Berry 2004, Paul and Routray 2013, Veland et al. 2010); floods (Mavhura et al. 2013); heavy rain (Roncoliet al. 2002, Chang'a et al. 2010); and ENSO-induced frost (Waddell 1975). Drawing on this place-based knowledge, 'hazardscapes' have been developed where the frequency, impact, and warning signs of hazards as well as the ways that nature mitigates hazard impact are documented through participatory techniques (Cronin et al. 2004) and hazard mapping (Tran et al. 2009, Cadag and Gaillard 2012). In another example, comparative geological and linguistic analysis of Australian Aboriginal stories and narratives have showed that they include accurate information about sea-level rising floods occurring over 7,000 years ago (Patrick et al. 2016). As in science, understanding past events is important to predicting the future and to adaptation. More details about the relationship between ILK and hazard mitigation are provided in Appendix 1.
- iii. Taboos and sacredness: The presence of taboos or of sacred sites such as groves, landscapes, mountains, or objects indicate NCP ranging from direct material use to identity (Thorley and Gunn 2008, Dudley et al. 2010, Samakov, 2017). For example, in Oceania, material and non-material contributions of marine resources are indicated by reef and lagoon tenure, which is used to manage access in defined territorial waters and serves to protect marine resources (Johannes, 1978). Similarly, concepts of taboo or (sacred) prohibition indicate human use of nature and are themselves manifestations of non-material benefits of nature (Bambridge)

2016a, 2016b, Torrente 2016, Ottino-Garanger et al. 2016, Dixon 2016, Conte 2016, Veitayaki 2015). Recording taboos and sacredness in relation to nature elements is a measure of a given society's identity through intricate linkages to nature.

- iv. Practices of nature management. IPLC practices, including changes in society and development of rules to address over-harvesting (Wehi et al. 2018), also measure NCP coproduction. For example, ILK practices to enhance pollination, ranging from fire management to strategic placement of crops, indicate the importance and extent of pollination (IPBES 2016).
- v. Land use and land cover: The existence of high biodiversity landscapes and sacred sites nurtured by ILK indicates the co-production of a wide range of NCP. These landscapes can be measured as land managed by IPLCs (Garnett et al. 2018) as well as by detecting land use patterns such as large scale agroforestry (Brondizio 2008, 2017) or shifting cultivation systems (Heinimann et al. 2017). The present-day composition of many ecosystems and culturally- and economically-important landscapes may also be a measure of ancient management by IPLCs; for example, anthropogenic soils (terra preta) formed by ancient Amerindians settlements suggests their knowledge of benefits provided by improving soil fertility (NCP 8) and also affects present-day Amazonian biodiversity (McMichael et al. 2014). Measuring the geographic extent of practices and landscapes that ensue from past and present ILK activities is a key way to measure NCP. Contemporary soil management systems by IPLCs such as terraced cultivation landscapes in Asia, in high mountain areas, and in the Mediterranean region are areas where communities can explain how such practices contribute to soil improvements through decrease of erosion.
- vi. Direct elicitation: IPLCs have spoken directly about their knowledge of NCP, especially during Dialogue workshops that were published regarding the 4 regional assessments. One such example is the role of Ficus species in agricultural areas in Madagascar; planting Ficus in fields increases agricultural productivity and overall biodiversity (Rafidison et al. 2016). While describing such practices, traditional communities refer simultaneously to the ecological role of these trees, which attract many birds and lemurs, and also the connection to ancestors who planted them, and the power that they possess that can influence people's lives. Further, their leaves are often medicinal and their latex useful for hunting. ILK thus has a truly holistic approach that does not separate the economic and tangible from the intangible and the overall ecological value. Because ILK tends to be holistic and consider social and ecological systems as interdependent, elicitation of values of nature are often linked to human-well-being. ILK, through elicitation of IPLCs often articulate and measure threats to NCP and their own well-being in an intertwined way because ILK understands interconnections between ILPC and nature and the impacts of nature on their lives in a holistic way that does not dissect one element and its specific use. ILK may thus measure changes in NCP by identifying processes that affect biodiversity and their lives concomitantly, including industrial development, forced displacement and migration, and climate change.

While scientific and ILK measures may seem distant depending on the type of question or goal, there are potential synergies between science and various types of indigenous and local knowledge systems. For example, agroforestry practices developed by and valued according to local ILPC measures also have high production outputs and may include carbon sequestration potential, both of which can be qualified and quantified in different but complementary ways (Altieri and Nicholls, 2012). Co-produced systems like agroforestry that provide critical NCP requires information about practices, such as soil management techniques, and how and where they are deployed, based on measures coming both from scientific research and ILK (Altieri et al., 2015).

2.3.4 Methods for measuring impact of NCP on good quality of life

This section evaluates how different material and non-material relationships between people and nature influence the perception, importance, and value of NCP across social groups. Different societies and cultures, and different individuals within them, may consider their relationship to nature and the importance of various NCP in quite different ways. This leads to multiple dimensions of value, which are discussed in depth in Chapter 1. We take a broad view of how value should be discussed and quantified. This requires mobilizing multiple methods to describe, characterize, and measure the value of nature's contributions to good quality of life. Value concepts can be expressed in terms of environmental (biophysical), economic, or social criteria, or in terms of specific outcomes such as health, income, or livelihoods. This section describes several approaches to measuring the value or importance of NCP, including methods that focus on biophysical measures with a clear link to quality of life, methods from the health sciences, methods from economics to quantify the market and non-market value NCP, and social, cultural, and holistic approaches to describing the impact of NCP on good quality of life.

2.3.4.1 Biophysical measures of NCP

Biophysical measures are often used to assess the co-production of NCP. Biophysical measures also can be useful for measuring impact on good quality of life as long they are clearly linked to measures of human well-being. For example, measures of the amount of natural habitat in agriculture are useful for predicting pollinator abundance, which can be linked to food production and improved nutrition. But for NCP with a complicated relationship between biophysical quantities and good quality of life, or that are valued quite differentially by different groups, biophysical indicators only provide a partial measure of the impact on good quality of life. For example, increases in water flow may be good or bad depending upon whether there is currently water shortage (drought) or excess water (flood) affecting different groups of people. Another challenge is that biophysical measures may have course spatial resolution that does not include indicators grounded in local and indigenous knowledge better able to capture local needs

(Sterling et al., 2017). For example, a measure of water quality cannot capture Maori values such as the role of particular water bodies in creation stories, maintaining local species habitats, used in access routes, or potential use by future generations (Harmsworth et al. 2016).

Even when a biophysical measure is clearly tied to an impact on quality of life, the biophysical measure alone rarely is sufficient for describing the value of the NCP (Martin-López et al. 2014). For example, knowing how intact ecosystems can reduce flooding potential downstream is an important component of the value of flood reduction. But without knowing the number of people exposed or impacted downstream the biophysical measure of the value of flood reduction is incomplete (Watson et al, 2019). Also, biophysical measures should account for changes in the relative scarcity of nature. NCP that become scarcer over time relative to human-made substitutes will become more valuable (Krutilla 1967, Drupp et al. 2018).

Careful thought is required to translate biophysical measures into measures of impact on people and their quality of life (Polasky and Segerson 2009, Keeler et al. 2012). Olander et al. (2018) describe the development of benefit relevant indicators (BRIs), which are well-defined measures of outcomes valued by people because they have a direct impact on well-being. Some biophysical measures, such as some components of human health, make good benefit relevant indicators because they have clear value to people and may also encapsulate several aspects of quality of life at once. Epidemiological models can be used to translate environmental exposures to pollutants into health risks. Such methods have been applied to assess the health benefits of reduction in exposure to air pollution (e.g., Pope and Dockery, 1999). For many biophysical measures, however, there are several intermediate steps needed to translate the biophysical measure into a measure of impact on human quality of life. For example, the contribution of an ecosystem to nutrient filtration can be measured in biophysical terms by the reduction in nutrient loadings to water bodies. But information about nitrate loading alone is insufficient for understanding impacts on human health. Translating nutrient loadings to impacts on quality of life also requires knowledge of how changes in nutrient loadings affect water quality (levels of nutrient concentrations), how people use water downstream (drinking water, irrigation, recreation, etc.), and how nutrient concentrations affect these uses (e.g., whether for drinking water there is a water treatment plant that removes excess nutrients prior to drinking so that extra nutrients increase cost, or are there health effects from drinking lower quality water). In addition, current biophysical outputs do not necessarily represent future biophysical outputs. For example, climate change may cause changes in precipitation patterns and runoff leading to different nutrient loadings with consequent impacts on various downstream uses (Runting et al. 2017).

Another disadvantage of using biophysical measures is that it can be hard to compare impacts involving multiple NCP. Assessing and comparing the impact on good quality of life of different outcomes of co-production typically requires either measuring outcomes in the same unit or knowing people's preferences for alternative outcomes (Mastrangelo and Laterra, 2015). For

example, clearing land to plant crops will increase food production but often results in lower water quality and reductions in carbon storage. Whether this increases or decreases overall value depends on the relative value of food versus water quality and carbon storage. Biophysical measures are essential to support evidence-based decision-making but are not able to fully capture diverse value systems.

In sum, biophysical measures are essential for defining potential NCP, realized NCP, and output, but need to be clearly linked to human well-being in order measure to impact on good quality of life. But biophysical measures alone are rarely sufficient for evaluating impact on good quality of life. In section 2.3.5, we combine biophysical measures with measures of human use to define impact on good quality of life.

2.3.4.2 Contributions of NCP to Health

NCP impact health through: (1) dietary health, (2) environmental exposure, (3) exposure to communicable diseases, (4) hazard risk reduction including exposure to extreme weather, drought or fire, (5) psychological health, and (6) use of natural compounds in medicinal products and biochemical compounds. For the first four risk factors, disability-adjusted life years (DALY) are frequently used to assess overall disease burden. DALY's are expressed as the number of years lost due to ill-health, disability or early death. The measure is becoming increasingly common in health impact assessments (Murray 1994). Because risk originates from multiple interacting factors, including human drivers of environmental degradation, disaggregating the contribution of nature to reducing health risks remains highly complicated.

Diet: Diet related disease is the leading cause of premature mortality, both in terms of noncommunicable diseases such as diabetes and cardio-vascular illness, but also including hunger and starvation (Forouzanfar 2016, Wang et al. 2016). Food production (NCP 12) and multiple supporting NCP are central to providing sufficient, healthy, delicious, and culturally relevant foods. While global food systems are able to produce sufficient calories for today's population (increase in NCP 12 production), many people do not consume a healthy diet. Lack of income leading to under-consumption continues to be a problem in many poorer areas while overconsumption leading to obesity is an increasing problem in many middle and upper income countries. Diet composition is also important. Increased consumption of fruits and vegetables is associated with reductions in various diseases such as cardiovascular disease (Ness and Powles 1997). The diversity of global food supply is falling (decrease in the number of species supporting NCP 12; Khoury et al. 2014, Lachat et al. 2018).

Environmental Exposure: Environmental exposure includes the health risk associated with degradation of environmental quality. Notable health risks include air pollution (Cohen et al. 2017) and water pollution, flagged as fifth and ninth in terms of global risk by the Global Burden of Disease respectively (GBD 2017). NCP do not account for totality of risk from poor air and

water quality because much pollution originates from anthropogenic sources. Nature can filter out pollutants to some extent, though some recent studies show that nature can also concentrate and trap pollutants, which may occur with trees in urban settings (Keeler et al. 2019). An increasingly small proportion of the global population depends directly on clean water provided by nature, and a decreasing number of freshwater bodies have water quality of sufficiently high standard for human consumption without treatment. Most air pollution comes from vehicle emissions, power generation; other industrial sources, agricultural emissions; residential heating and cooking; re-emission from terrestrial and aquatic surfaces; chemical processing; and natural processes (IARC 2016). Emissions from agriculture, biomass burning, and natural processes are often exacerbated by loss of nature, suggesting an avoided cost of maintaining nature intact. Health impacts of exposure can be quantified by assessing population exposure to poor water or air quality metrics. Measures can include exposure risk levels or can be extrapolated to economic measures of avoided treatment cost or avoided mortality and morbidity (Aldy and Viscusi 2003).

Exposure to Communicable diseases and increased risk of contagion. Nature's contribution to exposures to communicable disease and reductions in exposure is mixed. Habitats and alteration of habitat affects the population of vectors of disease. Risk is highest when human populations are proximate to vectors or when they create environments that are conducive to vectors (e.g. creation of stagnant pools of water and increased risk of malarial infection). Disease risk increases when the vector and human habitat overlap such as is the case with human encroachment on forest systems for Ebola or the proximity of irrigated agricultural systems as with malaria. Risk maps can be developed which highlight localities where exposure risk is high (e.g., Anyamba et al. 2009).

Hazard risk reduction: Environmental change, including climate change, is increasing human risk exposure to natural hazards (e.g., floods, fires), exposure to extreme weather events, and heat stress for outdoor workers (McMichael et al. 2006, Guha-Sapir et al. 2016). Intact nature can reduce risks by intercepting or buffering the impact of extreme events or by providing shelter or relief, described in NCP 9 (e.g. reduced wave or storm surge impact, reduced urban heat island effect that reduces heat exposure for urban residents). At times however, change in nature in response to environmental change can increase risk (e.g. climate change driven fires increase exposure to poor air quality, loss of life to fire, and delayed risk of mass erosion driven by loss of soil retention). Specific measures include the direct loss of life due to a hazard in question. Contributions can be assessed by evaluating NCP's contribution to reducing loss of life or to the value of property damage (Barthel and Neumayer 2012).

Psychological well-being. Interaction with nature are hypothesized to improve mental health (Frumkin et al, 2017), though reviews of scientific findings have been inconclusive about the extent of this effect and the elements of nature which might provide it (Lee and Maheswaran, 2010, Haluza et al, 2014, Gascon, et al. 2015). Exposure to the outdoors does likely improve

learning and wellbeing for children (Tillmann et al. 2018, McCormick, 2017, Gill 2014). Visitation to national parks and urban green spaces are indicators of values associated with nature. Countries that normally top most global happiness surveys are associated with very strong conservation ethics. Happiness and psychological well-being is multidimensional however; security, employment, family, friendship are all important.

Medicinal Products: Many antibiotics, cancer fighting drugs, and painkillers such as aspirin are originally derived from nature (e.g. Salicylic acid is found in willows; the genus *Salix*). IPLCs frequently have specific knowledge and use of natural products, which can serve as their primary source of medicine. The perpetual evolutionary battle between predator and prey, parasite and host, including of microscopic biodiversity (bacteria, fungi), is a dynamic source of novel medicines including new antibiotics to battle antimicrobial resistance. While modern medicines are largely synthesized rather than cultivated, the majority of new medicines continue to be sourced from nature (Schippmann et al. 2006, Newman and Cragg 2012). Metrics for nature's contribution are in the proportion of novel drugs sourced from biodiversity, the economic value of novel drugs, and/or increased DALY's.

Box 2.3.1. Human health and microbiota

Microbial organisms living in and on the human body (in the gut, oral and nasal cavities, and reproductive and respiratory tract), collectively known as microbiota, carry out a range of vital functions and are a key determinant of health (Wang et al. 2017; Thomas et al. 2017; West et al. 2016; Hoffman et al. 2016; Belkaid and Hand, 2014, Turnbaugh 2007). These organisms (bacteria, viruses, fungi and other organisms) have co-evolved with humans over thousands of years and are important to human survival as they have been found to support several vital functions (Nagpal et al. 2014; Wang et al. 2017; Logan et al. 2016; Rook et al. 2014; O'Hara et al. 2006; Cash et al. 2006). These microorganisms vastly outnumber our human cells by at least an order of magnitude, with most of them residing in our gastrointestinal tract (Zhu et al. 2010; Gill et al 2006; Turnbaugh, 2007).

It is now well established that the microbiota plays an important role in regulating our immune system (Rook and Knight, 2015; Rook 2013; Hooper et al. 2012; Round and Mazmanian 2009). It has also been found to contribute to digestion, nutrition (Adams and Gutierrez 2018; Claesson et al. 2012; Kau et al. 2011; de Filippo et al. 2010; Bäckhed 2005) and defense against pathogenic organisms and to influence a number of metabolic, physiological, immunological processes (Bealkaid and Hand, 2014; Sommer and Bäckhed, 2013; Fukuda et al 2011; Lee and Mazmanian 2010; Candela et al. 2009; Macpherson and Harris, 2004; Hooper et al. 2003).

Declines in the abundance and diversity of human microbiota often associated with modern lifestyles have given rise to dysbiosis and associated dysbiosis-related diseases (such as inflammatory bowel disease) (Sommer et al. 2017; Mosca et al. 2016; Ipci et al. 2016; Ehlers and Kaufman 2010), thereby contributing to the rising global burden of noncommunicable diseases (Liang et al. 2018; Logan et al. 2016). Factors contributing to these altered patterns of the gut microbial ecosystem include industrialization, urbanization, overuse of antibiotics (Bello et al. 2018; Sekirov et al. 2010; Cox and Blaser, 2010; Tanaka et al. 2009; Khanna et al. 2018; Lange et al. 2016; Verhulst et al. 2008) and chemicals (Claus et al. 2016; Velmurugan et al. 2017), dietary changes (de Filippo et al. 2010), childbirth and neonatal practices (Lynch et al. 2016; Bäckhed et al. 2015), and reduced/limited early-life exposure to microbial diversity in the wider environment (Mosca et al. 2016; MacGillivray and Kollmann, 2014; Prescott, 2013; Huttenhower et al. 2012; Fallani et al. 2010). In particular, these changes in microbial exposures are linked with a rise in inflammatory disorders such as asthma (Ver Heul et al. 2018), allergic (Rook et al. 2013; Haahtela et al. 2013; Hanski et al. 2012; von Hertzen 2011), and other autoimmune diseases (such as multiple sclerosis) (Chen et al. 2016); inflammatory bowel diseases (McIIro et al. 2018; Sartor 2008), diabetes (Boerner and Sarvetnick 2011), cardiovascular diseases and obesity (Tang et al. 2017; Boulangé et al. 2016 Turnbaugh 2006), some cancers (Vetizou et al. 2015; Scanlan et al. 2008) and neurological disorders (Parashar and 2017; Szablewski, L. 2018), autism (Li and Zhou, 2016; Bjorklund et al. 2016; Finegold et al. 2002) and psychiatric conditions such as depression (Aerts et al. 2018; Thomas et al. 2017; Evrensel and Ceylan 2015; Rook et al. 2014).

Proximity to natural and farm environments (in particular those in which traditional farming methods are used sustaining rich microbe environments) reduces the incidence of some inflammatory diseases such as asthma (Stein et al. 2016; Mosca et al. 2016; Schaub and Vercelli 2015). As a result, higher rates of inflammatory disorders found in some modern cities may be associated with reduced microbial exposure (both in the environment and from contact with animals) (Tun et al. 2017; Schaub and Vercelli 2015).

These and other findings have implications for the development of targeted interventions such as the restoration of microbial diversity, for example, through dietary changes (Adams and Gutierrez 2018; White et. Al. 2018; Riccio and Rossano 2018; de Filippo et al. 2010), sound antibiotic stewardship (Khanna et al, 2018; Tanaka et al. 2009), traditional medicines (Thakur et al. 2014), and restoration of microbial biodiversity in the environment, including soil and urban environments, to improve, physical and mental health (Aerts et al. 2018; Liang et al. 2018; Rieder et al. 2017; Mills et al 2017; Marchesi et al. 2016; Rook and Knight, 2015; Rook et al. 2013; Cryan and Dinan 2012; Flies et al. 2018).

2.3.4.3 Economic valuation of NCP

Economists have developed a variety of market and non-market valuation methods applicable to measuring the value of many NCP (Champ et al. 2009, Freeman et al. 2014, TEEB 2010, US EPA 2009), and there are large databases of estimates of value along with relevant references (Carson 2011, Van der Ploeg and de Groot 2010, ESP 2017). Applications of economic valuation methods generate estimates of value measured in monetary terms. The three main advantages of applying economic valuation methods to measure the impacts on human well-being are that: 1) impacts on well-being are reported in a common (monetary) metric that allows for comparison across different NCP, 2) measures are readily understood by many decision-makers in governments and the private sector, and 3) measures are based on a set of well-established

methods grounded in economic theory. There are also some significant disadvantages, discussed below.

Economic valuation methods can be readily applied to many material NCP that are embodied in goods bought and sold in markets for which prices exist (e.g., agricultural crops, energy, materials). Even some non-material NCP can be evaluated using evidence from market transactions, such as values associated with recreation and tourism for which the expenses related to travel can be used to estimate the benefits (Freeman et al. 2014). However, many NCP are not traded in markets, particularly regulatory and non-material NCP, and therefore lack a market price that could be used as a signal of value. In some cases where NCP lack market prices, non-market valuation methods can be applied. These methods can be classified into three broad types: a) revealed preference methods, b) stated preference methods, and c) cost-based methods. Revealed preference methods generate estimates of value based on observed behavior on choices people make. For example, showing that houses located near parks or natural areas have higher property values than similar houses not located near parks or natural areas provides evidence on the value that people place on proximity to parks or natural areas (e.g., Mahan et al. 2000, Sander et al. 2010). Stated preference methods generate estimates of value from responses to survey questions. For example, contingent valuation can be used to ask whether respondents are willing to pay for a certain level of provision of an NCP. Cost-based methods use estimates of the costs of replacing an NCP with a human-engineered substitute. For example, clean drinking water can be supplied by ecosystem processes that filter nutrients and pollutants or by a water filtration facility.

Some NCP, especially non-material NCP such as those linked to spiritual and religious life or supporting identities (NCP 17), generate benefits that are difficult, and perhaps inappropriate, to measure in monetary terms using economic methods (Chan et al. 2012, Daniel et al. 2012, deGroot 2006, deGroot et al. 2002, MA 2005, Milcu et al. 2013). Few prior studies evaluate the capacity of nature to provide learning and inspiration (NCP 15), psychological experience (NCP 16), and identity (NCP 17) in monetary terms (Daniel et al. 2012, Cooper et al. 2016). The lack of inclusion of measures of the values of the non-material benefits is an important gap in economic measures of the value of NCP. Various authors approach evaluation of the impact of non-material NCP using other value notions, such as relational (Chan et al. 2016), constitutive (James 2015), socio-cultural (Martín-López et al. 2014), or transcendental values (Kenter et al. 2015, Raymond and Kenter 2016).

For many NCP in many locations, there are no existing studies that estimate the value of the NCP. Although the use of high-quality primary research is preferred, the realities of limited data and limited resources often dictate that benefit transfer is the only feasible option to estimate values. Benefit transfer is based on the use of valuation studies conducted at particular sites or in specific policy contexts to predict values at other unstudied sites or policy contexts (Johnston et

al. 2015). Using benefit transfer enables approximations of economic value to be provided when time, funding, or other constraints prevent the use of primary research to generate estimates of value. When considering the use of primary valuation research versus benefit transfer, the central tradeoff is between the resources and time required for the analysis and the level of accuracy in estimated values. Benefit transfers can generally be conducted more easily than primary valuation but can involve significant errors when not done carefully.

Some prior estimates of ecosystem service valuation use a particularly simple form of benefit transfer based on applying a value estimate per unit area of habitat type (e.g., Costanza et al. 1997, Troy and Wilson 2006). This approach assumes that every hectare of a particular habitat type is of equal value to every other hectare of that habitat type and ignores both ecological and social-economic heterogeneity that is often crucial in determining the value of ecosystem services (Plummer 2009, Polasky and Segerson 2009). Other critiques point out that it is invalid to simply scale estimates derived at a small spatial by the amount of total area (Bockstael et al. 2000). Because of substantive issues raised in the literature about benefit transfer based on applying a value estimate per unit area of habitat type, we do not use this approach nor report on estimates of the value of ecosystem services that rely on this approach. This rules out many of the most widely cited monetary estimates of ecosystem services.

Critics of applying economic valuation to NCP raise several issues. First, economic valuation methods may unfairly privilege the wealthy over the poor. Economic valuation depends on willingness-to-pay, and willingness-to-pay depends on the distribution of wealth and income. The poor will not be willing-to-pay as much as the rich even for important NCP simply because they lack the ability to pay. Second, there is evidence that framing issues in terms of markets and money can alter how people value nature (Sandel 2012, Falk et al. 2013). Finally, some critics think it is impossible to capture spiritual and religious values using economic valuation, as such values are fundamentally different from economic values (Stephenson et al. 2008, Satterfield et al. 2013, Cooper et al. 2016).

In Section 2.3.5, we include economic measures of the value of various NCP, particularly for material NCP, but for other NCP as well where available. Though it is important to include other measures of value of NCP in addition to economic measures, economic measures can be influential with government agencies (e.g., ministries of finance) as well as with the private sector.

2.3.4.4 Social, cultural, and holistic measurements of NCP

Identifying social, cultural, or holistic values (including socio-cultural, political, historical, patrimonial, and others) of nature by social-cultural groups across the planet requires understanding the diverse ways in which individuals and groups interact with nature and their differing concepts of quality of life. Local understanding and practices about these relationships influence and are influenced by local modes of conceptualizing nature and related practices and

knowledge, which may or may not correspond to a discreet measurable entity (Ellen & Fukui 1996, Descola 2013). Nature-culture relationships respond to and affect social norms, values and beliefs, social interactions (languages about nature, classifications, symbols and signs), ways of defining law and justice (including rights of access to resources, tenure, heritage and matrimonial systems), and processes that link the material to the non-material, the tangible to the intangible, and myths and taboos (Levi-Strauss 1966, Foucault 1966, Descola 2013). All these interconnected dimensions may be shared within societies and may be transmitted across generations through social learning, but they may also be contested, disrespected, or actively replaced in the face of new pressures and/or culture change. Notions of a good quality of life are linked to values that are generally local, but also, and increasingly due to media and global trade, include values and expectations from the larger society or even completely different regions (Sterling et al. 2017). For example, the value of local food systems and their diversity as elements representing the identity of a given society is changing very quickly as trade exchanges at the global level increases the global homogeneity of food diversity used and therefore choices made locally (Khoury et al. 2014).

When there are conflicts about an element of nature, approaches and methods to understand values need to consider their distinct social-cultural contexts. For example, extracting and trading wild medicinal plants to urban consumers may conflict with social-cultural, economic, and health values of people living in source areas who may have an emotional and cultural relationship to place and resources as well as those who depend economically or medicinally on these resources (Cunningham 1993, Richerzhagen 2010, Hamilton and Aumeeruddy-Thomas 2013, Enioutina et al. 2017). Non-material benefits cover a wide spectrum and may be intellectual, spiritual, emblematic, or symbolic (see also relational values; Chan et al. 2016). To understand these values, it is important to work in local contexts because cultural, ecological, economic, and social values are intertwined, and priorities may vary greatly in different geographical regions. This puts emphasis on cultural significance rather than cultural values and emphasizes how people establish significant meaning around components of nature.

One of the key indicators for IPLCs refers to 'connection to land' and 'connection to sea' (Cuerrier et al. 2015, see also CBD), which is a holistic indicator that relates to memory of place and its biodiversity, its role for economic needs, and also to adapting to changing environments such as climate change (Mcmillan et al. 2014). This indicator can be interpreted as whether community members have the possibility and the right to engage with the land and sea directly by cultivating their ancestral land and hunting or harvesting or fishing in these territories and includes their capacity to adapt and transform to face environmental change (Marshall et al. 2012). Additionally, personal and community connections to land (and sea) facilitate coproduction of other NCP such as learning from nature through direct learning or transgenerational transmissions, especially important for children (NCP 15) (Dounias and Aumeeruddy-Thomas 2017, Gallois and Reyes-Garcia 2017, Simenel 2017) and inspiration for

instance regarding artistic expression or recreational uses (NCP 15, 16) (Balmford et al. 2015, Wolff et al. 2017).

Integrated approaches to understanding significant cultural meaning related to nature using the idea of connectedness and locally-based approaches consider the following: (1) cultural uniqueness, (2) community reliance on nature that links to livelihoods, incomes, and level of importance for well-being; (3) cultural traditions (connectedness to place, rituals, width of interest across the community); (4) dramatic cultural change (the role of the element of nature considered in periods of dramatic change to address identity, or other sources of meaning). In addition, some integrated approaches consider the resilience of the social-ecological system and their ability to recover, adapt, and transform in the face of environmental change (Folke 2006). Due to this complexity and depending on the objectives for evaluating socio-cultural and holistic values, a diversity of methods is used, with a major common denominator being linking values to places and developing scoring approaches at the local level. Some of the diversity of methods used are shown below although this is not an exhaustive list. Combinations of several methods are often used:

- Qualitative in-depth and open interviews followed by encoding of discourses for analyzing preferences
- Developing narratives in general to understand emotions, sense of place, cultural memory, and situated knowledge (Nazarea 2016)
- Using maps coupled to field related sociological approaches, including understanding social behavior and networks related to a specific type of resource and its geography (Reckinger & Régnier 2017)
- Analyzing social exchange networks in relation to a specific resource such as seed exchange networks (Salpeteur et al. 2017)
- Analyzing world views and conceptualizations of nature and how this links to specific practices, and evaluating nature classifications through anthropological approaches (Sanga and Ortalli 2003)
- Free listing and ranking approaches (Martin 1995)

2.3.5 Status and trends of NCP co-production and impact on good quality of life

This section presents information on the status and trends of co-production of NCP and on the impact of NCP on good quality of life. The co-production of NCP is an important determinant of the impact of NCP on quality of life, but impact also depends on anthropogenic assets,

institutions, governance, culture, and other social, economic, and political factors. Our analyses attempt to disentangle the effects of changes in nature from changes in human factors on the coproduction of NCP, and on impacts on good quality of life, by presenting trends in potential NCP, output, and impact of NCP on good quality of life side by side (Figure 2.3.3). Though the results presented in Figure 2.3.3 are not causal, showing potential NCP, output, and impact helps to illuminate the main factors related to changes in NCP. Changes in potential NCP arise primarily from changes in nature. In contrast, changes in impact on good quality of life can arise from changes in nature, such as a decline in habitat leading to a reduction in the co-production of an NCP, or from changes in anthropogenic factors affecting the way people use and value an NCP. For example, even with no change in co-production, changes in access rules, human-made substitutes, or cultural norms that change how people interact with nature may cause shifts in how an NCP contributes to good quality of life. Figure 2.3.3 also helps to illuminate differences between NCP and outcomes that people care about, such as the filtration of air and water pollutants (NCP 4 and 7) versus outcomes of primary interest to people (air and water quality). Figure 2.3.3 does not include realized NCP. Realized NCP is the same as output for material and non-material NCP. For regulating NCP, realized NCP and output generally are different, with output measures more closely aligned to impacts on good quality of life. For example, when air or water emissions increase, ecosystems may filter more pollution (realized NCP increases), but air or water quality may decline (output decreases). We also show the global distribution of selected indicators relevant to NCP (Figure 2.3.4), and the relative status of NCP across terrestrial biomes (Figure 2.3.5).

Methods & indicators

Chapter authors systematically evaluated literature on co-production of NCP, impacts on good quality of life, and the status and trends for each of the 18 NCP presented in Table 2.3.1. To accomplish this, chapter authors developed a standardized template and undertook an expert evaluation following guidelines for systematic review (Center for Environmental Evidence 2013). In the templates, authors summarized the theory of NCP co-production and impact, and also summarized evidence about the status and trends in NCP. From these templates, authors then summarized evidence supporting global trends in co-production of potential NCP, output, and impact, which are presented in Figure 2.3.3 with explanation in Table 2.3.4. The longer templates and supporting data are contained in Appendix 2. Authors also identified and explained global, distributed data proxies to quantify NCP used to assess status and trends in each IPBES Unit of Analysis. These Units of Analysis encompass 11 terrestrial and 6 aquatic biomes and anthropogenic systems ranging from tropical forests to aquaculture areas to urban areas. Specific literature review was conducted for IPLCs and ILK for all NCP, and more extensive evaluations of ILK of climate regulation (NCP 4), soil development (NCP 8), and hazard regulation (NCP 9) are incorporated in the chapter and provided in Appendix 1.

To visualize and quantify NCP status and trends, indicators (Niemeijer and de Groot 2008) for potential NCP, output, and impact on good quality of life were selected for each NCP. Separate indicators for potential NCP, output, and impact on good quality of life were chosen, as trends in each may differ (Hattam et al. 2015). Candidate indicators were identified through review of the literature on each NCP (see Appendix 2). One to two indicators for each NCP were selected by consensus through dialog among chapter authors. Selection criteria prioritized scientific soundness and IPBES policy relevance (Heink et al. 2016, Maes et al. 2018, de Groot et al. 2010). NCP indicators presented in Figure 2.3.3 align with indicators in prior assessments for NCP that align with categories of ecosystem services used in prior assessments (Walpole et al. 2011, Hattam et al. 2015, Shepherd et al. 2016). Figure 2.3.4 includes data only for natural terrestrial biomes; NCP from oceans, freshwater, cultivated areas, and urban areas are not included in this figure. However, such areas, along with natural terrestrial biomes, are addressed in the text below.

Global, distributed data to represent potential NCP, outcome, and impact on good quality of life, relies heavily on biophysical data at present. Some global economic values, particularly for material NCP, are available. However, many indicators of NCP are not readily available globally. More data are available at regional and local levels, including qualitative measures that incorporates observations, tallies, perceptions, desires, visions, and experiences of local communities (Sterling et al. 2017). Few of the indicators proposed in previous research directly refer to existing datasets that are both global and spatially explicitly (Hattam et al. 2015, Heink et al. 2016, Maes et al. 2018, de Groot et al. 2010, Feld et al. 2009, Pongratz et al. 2017), but we aligned with these suggested indicators when possible. Average values were calculated for each data proxy over each biome. The indicators used to create Figure 2.3.5 are summarized in Table 2.3.3.

NCP	Data Proxies	Citation
NCP 3: Air quality regulation	Leaf Area Index	Zhu et al. 2013
NCP 4: Climate regulation	Terrestrial Net Primary	Zhao et al. 2005
	Productivity	
NCP 6: Water quantity	Evapotranspiration	Mu et al. 2013
regulation		
NCP 7: Water quality	Bare Area	Klein Goldewijk et al. 2017
regulation		
NCP 8: Soil regulation	Soil Organic Carbon	Stoorvogel et al. 2016, Van
		der Esch et al. 2017, IPBES
		2018
NCP 9: Hazard regulation	Area of Floodplain Wetlands	Reis et al. 2017

 Table 2.3.3: Global Data Proxies Representing Select NCP presented in Figure 2.3.5

NCP 11: Energy	Net Primary Productivity in	Zhao et al. 2005, ESA
	Forests and on Cultivated	Climate Change Initiative
	Land	2017
NCP 12: Food	Cultivated Area	ESA Climate Change
		Initiative 2017
NCP 13: Materials	Above Ground Biomass in	Liu et al. 2015, ESA Climate
	Forests	Change Initiative 2017
NCP 14: Medicine	Medicinal Species as a	Kreft and Jetz 2007, Pironon
	Fraction of Total Vascular	et al. in review
	Plant Species	
NCP 15: Learning	Geographical Overlay of	Hammarstrom et al, 2018,
	Linguistic Diversity and	Purvis et al, 2018, Stepp et
	Biodiversity	al.2004
NCP 17: Identity	Rate of Land-Use Change	Klein Goldewijk et al. 2017

ILK provides a wide range of indicators of nature (see chapter 2.2) and NCP. The ILK indicators most often used for NCP relate directly to co-production, i.e., interactions between people and nature that determine NCP provision. These indicators include population size, spatial distribution, animal behavior, and phenology of economically and/or culturally important wild plant and animal species, such as hunted animals, medicinal herbs, fodder species, and sacred species (Ghimire et al. 2004, Berkes 2012, Vershuuren et al. 2010). Quantitative measures of plant and animal species are most often abundance values (e.g., number or density of individuals in a certain area; Ticktin et al. 2018). In some cases, especially for economically important NCP, data may exist on harvest or catch per unit effort, or distance travelled to reach a resource (e.g., distance to firewood or water source). Another important group of NCP indicators from ILK describes the quality of an ecosystem that provides essential resources. For example, ILK may describe the quality of rangelands based on the health of the soil or the density of preferred and palatable species (Yacoub 2018).

IPLCs often use holistic and fuzzy indicators that are not readily quantifiable (Berkes and Berkes 2009), making them difficult to summarize and include in a global assessment. ILPC perception and categorization of NCP are often considerably different from the 18 NCP categories shown in Figure 2.3.3 and Figure 2.3.5. Some ILPC indicators are similar to NCP categories used in this assessment. For example, the health of the forest (Caillon et al. 2017) is similar to NCP 1 (maintenance of habitat). However, the IPLC indicator of the health of the forest is broader and more inclusive than maintenance of habitat. Biocultural approaches capture both the ecological underpinnings of a cultural system and the cultural perspectives of an ecological state and thus highlight interactions and feedbacks between humans and their environment (Sterling et al. 2017). Some IPLC indicators of nature monitor supernatural beings like the presence or encounter rates with supernatural forest dwelling entities (Lyver et al. 2018).

2.3.5.1 Global Status and Trends across NCP

Figure 2.3.3 summarizes global trends in potential NCP, output, and impact on good quality of life based upon a comprehensive and systematic literature review. Table 2.3.4 provides background for Figure 2.3.3. Section 2.3.5.2 discusses the ways trends in NCP differ by IPBES Unit of Analysis. Section 2.3.5.3 provides a summary discussion for each NCP. Longer and more detailed discussion for each NCP are given in Appendix 2. Appendix 1 provides an assessment of NCP from an ILK perspective when conducted separately from the long descriptions in Appendix 2. Section 2.3.5.4 addresses knowledge gaps. Two NCP, habitat creation and maintenance (NCP 1), and maintenance of options (NCP 18), do not have meaningful distinctions between potential NCP, output, and impact of NCP on good quality of life. For these two NCP we report only on trends in potential NCP. For all other NCP (NCP 2 – 17), we report on status and trends for potential NCP, output, and impact on good quality of life.

Globally, the majority of NCP have experienced a decline in potential NCP (left panel of Figure 2.3.3), output (central panel of Figure 2.3.3), and impact on quality of life (right panel of Figure 2.3.3). Land-use change, climate change, and other major drivers of ecosystem change (see chapter 2.1) have caused changes in nature (see chapter 2.2) that have caused declines in many NCP both in terms of co-production and impact on quality of life.

Unedited draft chapter 31 May 2019

				NCP				С	Jutpu	ıt				Impa	ict
	Indicator	Major Decrease	Sma l Decrease	No change	Small Maj Increase Incre	lndicator	Major Decrease	Sma l Decrease	No change	Small Increase	Major Increas	Indicator	Major Decrease E	Smal No Decrease chang	Small Ma
1 Habitat	Extent of suitable habitat	ø					1	1	1		T		T		
creation and maintenance	Biodiversity intactness index	Š	i.	i.	i i		i.	i.	i.	i.	i.		i.	i i	i i
2 Pollination and seed	Pollinator diversity	١				Abundance of managed and wild pollinators	i.	×			i.	Health associated with intake of	i		
dispersal	Natural habitat in agriculture	۲				Pollen deposition	÷	•			÷	pollinator dependent foods		×	
3 Air quality regulation	Retention and prevented emissions of air pollutants by	÷	X	-	1	Reduced concentrations of PM2.5	4	×	÷	ł.	-	Avoided morbidity and premature mortality from air pollution	-	×	
rogulation	ecosystems	1	Y				1				L	Avoided costs from air pollution		X	
4 Climate regulation	Prevented emissions and uptake of greenhouse gases by ecosystems	i.	×		i i	Reduced concentrations of greenhouse gases in the atmosphere	۹				i.	Reduction in climate related costs	i.	×	
5 Ocean acidification regulation	Land and ocean carbon sinks	i.	į.	×	i i	Reduced ocean acidification Extent of marine calcification	•	\$	Ì	į.	i	Seafood availability due to ocean acidification (e.g. shellfish) Benefits from coral reefs (e.g. ecotourism, food)	4 4	ii	i i
6 Freshwater quantity regulation	Ecosystem impact on air-surface- ground water partitioning	ł	×			Water avai l ability	-		×		Ì	Water available for people relative to demand	•		
7 Freshwater quality regulation	Extent of ecosystems that filter or add constituent components to water	į.	\$	i	i i	Reduced concentration of pollutants in water	i	×	ĵ.	i.	i	Reduced incidence of water borne disease Avoided water treatment costs	i	.	74
8 Soil regulation	Soil organic carbon	Ť.	×			Soil quality	İ	×			İ	Soil quality impact on crop production	Ì	×	
9 Natural hazard regulation	Ability of ecosystems to absorb and buffer hazards	ł	×	ł		Reduced incidence and severity of hazards	4	ł	l.	ł	Ì	Reduced morbidity and premature mortality due to natural hazards Reduced property loss due to natural hazards	4	11	
10 Pest regulation	Natural habitat in agriculture Diversity of competent hosts of vector-borne diseases	 Image: A mail Image: A	•			Reduced food spoilage Reduced risk of disease transmission	÷	•	×		÷	Reduced net farm income loss from pests and diseases Reduced incidence of infectious diseases	÷	\$	×
11 Energy	Extent of agricultural land	î.		i.	× i	Energy content of bioenergy crops	i	i	î.	7	i.	Revenue from bioenergy production Energy security from bio-energy	i.	i i	7
10 Feed and	Extent of forested land Extent of agricultural land	÷.	×		•••	Production of fuelwood Food produced (kcal)	÷	•	1	74	• 74	and fuelwood Reduced hunger	÷		ົ້. ເ
12 Food and feed	Marine stocks	×			×	Food quality (nutrients) Seafood produced (kcal)	÷	•				Reduced mainutrition	÷	×	
13 Materials	Extent of agricultural land	÷	4		×.	Agriculture-based materials produced (tons)	1	1	1		カ	Employment in materials production	1		×
To materialo	Extent of forested land	11	×		11	Timber production (m3)	1	11	1	1	み	Revenue from forestry	1.1	1.1	
14 Medicinal, biochemical, and genetic	Fraction of species known to be medicinal	÷.	•		ii	Natural medicinal products and manufactured bio-derived medicines	÷.			79	i	Improved health from natural medicines or bio-derived	i.		×
resources	Phylogenetic diversity	•				Gene bank accession and available genetic resources	4			×	į.	medicines	41		~
15 Learning	Proximity of people and nature Diversity of life from which to learn	*	÷	÷.	÷÷	Ideas and products mimicking or inspired by nature	÷	4	÷	÷	÷	Economic value of bio-inspired production	÷	11	×
16 Experience	Area of natural and traditional landscapes and seascapes		•			Visitation rates to natural terrestrial, coastal, and marine areas Daily exposure natural terrestrial, coastal and marine areas	:	•		*	:	Increased awareness, care, mental health, cultural security, life satisfaction - urban Increased awareness, care, mental health, cultural security, life	i	×	*
17 Supporting identities	Stability of land use and land cover	i	\$	i		Identity value – urban		i	i	×	i	satisfaction - rural and ILPC Increased awareness, care, mental health, cultural security, life satisfaction - urban Increased awareness, care,	i		×
	Species richness		i		i i	Identity value - rural and ILPC	N.	i.		i.	i.	mental health, cultural security, life satisfaction - rural and ILPC	i.	×	
18 Options		X													
	Phylogenetic diversity	3													

Figure 2.3.3: Global trends in potential NC Dutput, dimpact on good quality of life by 18 NCP. For each NCP, the overall global trend over the past 50 years (1968-2018) for potential NCP (left panel), output (center panel), and impact on good quality of life (right panel) is indicated by a symbol and its location in columns indicating either major decrease, small decrease, no change, small increase, or major increase. When comprehensive data do not go back 50 years, trends are for a shorter period of time that match the length of data. Indicators are defined so that an increase in the indicator is associated with an improvement in NCP, output, or impact. Indicators related to harm or damage are thus defined as a reduction in harm or damage. Double arrows

pointing either up or down indicate increasing or decreasing trends, respectively, across regions that are similar in direction but differ in magnitude. Crossed arrows indicate that trends in trends in trends in the similar regions show significant differences (e.g., declines in forests in most tropical regions and increases in forests in many temperate regions). Habitat creation and maintenance (NCP 1) and Maintenance of options (NCP 18) are both defined in terms of contributing to potential NCP and do not relate directly to output or impact on good quality of life.

NCP	Potential	Output	Impact
1 – Habitat	Significant global habitat declines (Butchart et al. 2010) with differing magnitudes across regions . Well established.		
2 - Pollination	Global decrease in pollinator diversity (Potts et al. 2016a, 2016b, Regan 2015), most in industrialized regions, little evidence elsewhere (Biesmeijer et al. 2006, Cameron et al. 2011, Bartomeus et al. 2013, Carvalheiro et al. 2013, Koh et al. 2016). Habitat destruction indicates decreases (Garibaldi et al. 2011, Potts et al. 2016b). Well established.	Global decrease in pollinator abundance (Potts et al. 2016a, 2016b); indications of loss in pollination potential (Aizen and Harder 2009; Garibaldi et al., 2011; Koh et al.,2016). Global deficits in crop pollination (Garibaldi et al. 2011, 2013, 2016). Established but evidence is scattered.	Health impact from declines in animal pollinated-food via micronutrient deficiency (Smith et al. 2015). Nutrition contribution from pollinator-dependent crops varies globally (Chaplin- Kramer et al. 2014). Low- income groups have less ability to compensate.
3 – Air Quality	Increase in air pollutants from biomass burning, deforestation, and agriculture, but increase in plant leaf area increases pollution retention and vegetation protects soils and prevents dust (Lelieveld, et al, 2015). Unresolved urban impact (Keeler et al. 2019)	Global increase in emissions of fine particulate matter, black carbon, sulfur oxides, and ozone, but major regional variation (OECD 2016). Well established by distributed monitoring networks.	3.3 million premature deaths annually attributed to air pollution (Amann et al. 2013). Increasing trend in Asia and decreasing in US and Europe (Lelieveld et al. 2015). Increasing cost of healthcare and lost work (OECD 2016). Mixed impacts across user groups.

 Table 2.3.4 Summary Evidence Base for Global Trends over the Past 50 Years by NCP

		C 1	T • • · ·
	Stable but spatially	Greenhouse gas	Increase in economic cost
	variable terrestrial	concentrations in the	of climate-driven extreme
	sequestration in biomass	atmosphere have increased	events leading to deaths,
	and emissions from land	dramatically in the last 70	proliferation of diseases;
	use change, substantial	years (WMO 2016; IPCC	agricultural disease
	interannual variation (Le	2014). Well established.	outbreaks, and property
	Quere, 2018; Keenan et		damage (IPCC 2014). Some
	al. 2015; Song et al.		regions have experienced
	2018). Would be more		improvement in agricultural
	sequestration with no		production and fisheries
	anthropogenic land		(IPCC 2014).
	management (Erb et al.		
	2017). Increase in		
	methane and nitrous oxide		
ate	emissions (Tian et al.		
– Climate	2016). Precise		
-0	contributions of		
4	ecosystems incomplete.		
	Stable terrestrial	Ocean acidification has	Decline in shellfish
	greenhouse gas emissions	increased (IPCC, 2014) and	availability (Kroeker, et al.
	from land use change and	marine calcification has	2010). Increasing economic
	sequestration in biomass	dramatically declined	damage of coral reef loss,
	(Le Quere, 2018).	(Kroeker, et al. 2010).	estimated to be US\$500 to
	Increase in ocean carbon		870 billion by 2100
uo	sequestration (Le Quere,		(Brander et al. 2012).
ati	2018). Warming of upper		
ific	ocean increases range of		
cid	nitrogen-fixing		
n A	phytoplankton, increasing		
– Ocean Acidification	ocean net primary		
Ŏ	productivity (Morán et al.,		
S I	2010, Duarte 2017).		
L		1	1

	x 1 22 1		
	Increased runoff quantity	Global river discharge	Increasing human water
	and flow speed due to	constant over past 50 years,	demand globally increasing
	deforestation, expanding	but spatially variable	water scarcity (Haddeland
	(un-irrigated) cropland,	(Milliman, Farnsworth et al.	et al 2014; Brauman et al
	and urbanization	2008; Haddeland, I., et al.	2016). Regional variation
	(Sterling, Ducharne et al.	2014). Groundwater	but all are affected (WWAP
ty	2013; Trabucco, A., et al.	increases in some regions,	2015). Impacts vary
6 – Water Quantity	2008). Ecosystem change	decreased in others (Rodell,	depending on adaptation
Zus	impact on water	Famiglietti et al. 2018).	capacity, but all are affected
er (regulation established but	Well established.	(WWAP 2015) Direct
Vate	incomplete (van Dijk and		linkages from water
ĭ ►	Keenan 2007)		scarcity measures to
9			impacts are inconclusive.
	Decreased filtration	Global decrease in water	Global decrease in the
	potential due to increased	quality; nutrient pollution	prevalence of water-borne
	impervious surfaces and	and pathogens increasing	disease, though at different
	vegetation removal	and regionally variable	rates (Pruss, Kay et al.
	(Mayer, Reynolds et al.	trends in industrial waste	2002, UNEP 2016). Water-
	2007, Sweeney and	(UNEP 2016). Many local	borne disease is well
	Newbold 2014), though	studies and some	studied (WHO and
	varies globally (Seto et al.	government reporting, but	UNICEF, 2017). Extent,
	2012). Mechanisms well-	few globally consistent	quality, and spending on
	understood but filtration	water quality measurements	water treatment and
Water Quality	effectiveness varies	and indicators	sanitation increasing (WHO
ua	widely among studies	(GEMS/Water 2018)	and UNICEF 2017). Extent
L O	(Mayer, Reynolds et al.		and expansion of
ate	2007, Sweeney and		infrastructure is well
	Newbold 2014).		monitored (WHO and
7 -			UNICEF 2017).
	Global decline in soil	Global decline in soil	Declining crop yield due to
	organic carbon, regional	quality (IPBES 2018a; FAO	soil degradation; regional
	variation (IPBES 2018a;	and ITPS, 2015; Lal, 2015a;	variation (Sonneveld et al.,
	FAO and ITPS, 2015; Lal,	Pierzynski and Brajendra,	2016; Lal and
	2015a; Pierzynski and	2017; Lal, 2015b).	Moldenhauer, 1987; Bakker
	Brajendra, 2017; Lal,		et al., 2007). Variable
	2015b).		capacity to compensate
Soils	,		using substitutes like
So			mineral fertilizer (Blanco-
8			Canqui and Lal, 2010).
1		1	1

		~	
	Decreased natural hazard	Increasing number and	Increasing number of
	regulation from land use	magnitude of hazards	people and value of
	change including	(Guha-Sapir et al. 2016,	impacted property (Guha-
	shoreline hardening,	shoreline hardening, Van Aalst 2006) Number	
	floodplain development,	and location of disasters	impact with less robust
	and detrimental forest	varies substantially year to	institutions and on more
	management (Renaud, et	year (Guha-Sapir et al.	vulnerable social groups
	al. 2013). Most has	2016). Hazard occurrence is	(Kahn 2005, United
	reduced hazard	well studied (Guha-Sapir et	Nations Human Settlements
	regulation, but there have	al. 2016)	Programme 2003). Hazard
	been positive changes		occurrence and impact is
	(Renaud et al. 2013,		well studied, but hazard
Irds	Arkema et al. 2017).		regulation inconclusive
– Hazards	Mechanisms understood		(Renaud et al. 2013, Guha-
H-	but poorly studied in situ		Sapir et al. 2016)
- 6	(Renaud, et al. 2013)		
	Decline of natural pest	Globally, food spoilage and	Increased costs from
	enemies and competent	crop loss due to pests has	decline in natural pest
	hosts of vector-borne and	not changed significantly	control (Oerke 2006).
	zoonotic diseases in all	(Oerke 2006, Savary et al.	Decrease in vector-borne
	regions, with larger	2019). Risk of disease	disease incidence from
	declines in the tropics and	transmission has increased	1950 to 1980 but increase
	sub-tropics (Guff et al.	(Whitmee et al, 2015).	in the last 30 years and is
	2017; Jones et al. 2008).		regionally variable (WHO,
	Decreased natural habitat		2014). Established but
sts	in agriculture to support		incomplete.
10 Pests	pest predators		
10	(Letourneau et al. 2009).		

	Increasing extent of	Increased an array	Increasing income from
	Increasing extent of	Increased energy	_
	agricultural land, though	production by biofuel crops	biomass energy (WEA
	varies regionally	(Koh et al., 2008) and $(L_{1}, L_{2}, L_{2$	2000). Biofuels key to
	(Alexandratos and	fuelwood (FAO 2018).	household income
	Bruinsma 2012). Global	Slow growth and some	(Cavendish, 2000;
	decrease in forested area	decline in traditional	Rajagopal, 2008; Dovie,
	to provide fuelwood,	biomass, primarily for	2003; Paumgarten and
	though varies regionally	cooking and heating, with	Shackleton, 2003). Biomass
x	(Song et al. 2018; Keenan	changing technology.	energy, including timber
11 – Energy	et al., 2015).		and crop residues, provides
Ene			energy security to more
Π.			than two billion people
11			(Schiermeier et.al, 2008).
	Increase in harvested area,	Increasing global	Decrease in hunger since
	yields, and meat and milk	production of food	1970, though small
	production with regional	(Alexandratos and	increasing trend in past
	variation (Alexandratos	Bruinsma 2012). Increased	decade (FAO et al. 2017).
	and Bruinsma 2012).	global fish catch and	Malnutrition has increased
	Decrease in fish catch	cultured (farmed) fish	since 1970, driven by
	potential (Cheung et al.	production (FAO 2016a).	increasing obesity,
	2010), through variable	Current food production	countered in many regions
	across regions (Srinivasan	largely meets global caloric	by decreasing
	et al. 2010).	needs but fails to provide	undernutrition (FAO et al.
-p		dietary diversity, notably	2017)
12 – Food		fruits, nuts, and vegetables,	
		for a healthy diet (Willett et	
12		al 2019).	
	Increasing extent of	Production of a majority of	Globally, employment in
	agricultural land, though	material resources has	forestry has probably
	varies regionally	increased globally, though	increased since 1970 and
	(Alexandratos and	there is considerable	reported employment has
	Bruinsma 2012), though	diversity among materials	remained stable over the
	area of cotton was stable.	(FAO, 2018). Increased	past 20 years (Whiteman et
lls	Global decline in forest	timber production (FAO	al, 2015; FAO 2018).
eria	area; much spatial	2018).	Increasing revenue from
laté	variation (Song et al.		forestry (FAO 2014)
N N	2018; Keenan et al.,		10100019 (1110 2017)
13 – Materials	2018, Rechair et al., 2015).		
-	2013).		

	Destining frontion of	Increase in medicines based	Tu a man and the solution of t
	Declining fraction of		Increased health attributable
	known medicinal species	on natural products	to nature-based medicines;
	due to ILK decline,	(Newman et al 2003,	more than 50% of global
	including access to	Newman and Cragg 2012).	population relies almost
	customary territories;	30,000 new compounds	exclusively on natural
	reduces capacity to	from oceans (Alves et al.	medicines (WHO 2013,
14 – Medicine	identify new drugs from	2018). Gene bank accession	Leaman 2015)
dic	nature (Richerzhagen	and genetic resources have	
Me	2010). Declining	increased (Tanksley and	
-	measures of phylogenetic	McCouch, 1997)	
1	diversity (Faith 2018).		
	Declining population	Global decrease in	The overall value of bio-
	living in direct proximity	biodiversity in conjunction	inspired goods is
	to nature due to	with fewer people living in	increasing, although it is
	urbanization and	proximity to nature leads to	concentrated within few
	migration (UN 2014,	fewer ideas and products	very large industries
	WHO 2016). Reduced	mimicking or inspired by	(Richerzhagen 2011).
	human-nature interactions	nature (e.g. images of	1 / 1
ng	(Soga & Gaston, 2016).	nature in children's media:	
irni	Declining diversity of life	Julliard et al. 2015,	
– Learning	from which to learn,	Williams Jr, et al. 2012)	
	measured as phylogenetic		
15	diversity (Faith 2018).		
	Declining area of natural	Nature visitation rates have	Wealthy, urban interest in
	and traditional landscapes	risen in some areas and	nature has increased
	and seascapes due to	fallen in others (Balmford	(Keeler et al, 2019), but
	urbanization and land use	et al. 2009; Balmford et al.	rural migration and land use
	change (Seto and	2015). Daily exposure to	change have decreased
	Shepard, 2009; Seto et al.	nature has decreased as	well-being from nature
	2011)	urbanization has increased	exposure (Claval 2005),
		(Vining et al, 2008, Soga &	particularly for the poor
		Gaston, 2016)	(UN Human Settlements
			Programme, 2003).
c,			Indications of positive
mc			mental and physical health
erić			impacts from exposure to
y dx			nature, but findings are
16 - Experience			inconclusive (Bowler et al,
16			2010. Daniel et al 2012).
L	1	1	/

	~	~	
	Stable human	In urban areas, increasing	Increasing youth interest in
	environments provide	consciousness of nature and	nature's contribution to
	culture with the	its contributions (Wood et	identity (King and Church
	possibility to attribute	al 2013). For rural and	2013), and nature has
	value to it and form	ILPC, decreasing local	become engrained in some
	identities (Daniel et al	resource-based economies	national cultural identities,
	2012, Stephenson 2008,	and loss of traditional	livelihoods, and national
	Plieninger et al 2015).	knowledge and lifestyle and	economies (Daniel et al
	Increased globalization,	thus identities (Kaltenborn	2012). Rural migration and
	urbanization, and	1998, Pascua 2017). Little	land use change decrease
	environmental	evidence.	identity linked to nature
>	degradation had decreased		(Claval 2005, Bell et al
ıtit	stability of land use and		2010. Daniel et al 2012).
17 – Identity	land cover (Plieninger et		
-	al 2015, Milcu et al		
17	2013).		
	Increasing species		
	extinction rates; major		
	regional variation (Pimm		
	et al. 2014, Ceballos et al.		
	2017). Decreasing		
	phylogenetic diversity		
	(Faith 2018). Trends		
0U	based on data but the		
18 - Options	places and species for		
	high diversity loss are not		
18	well established.		
		•	

Trends in Potential NCP

Globally, potential NCP has declined for 14 of 18 NCP. Potential NCP has declined for habitat (NCP 1), regulatory NCP with the exception of regulation of ocean acidification (NCP 2-4, 6-10), medicinal, biochemical and genetic resources (NCP 14), non-material NCP (NCP 15-17), and maintenance of options (NCP 18). Over the past 50 years, agricultural expansion, and to a lesser extent expansion in other human dominated land uses (mining, energy, urban, and built areas), have led to increases in both potential NCP and output of material production dependent on agricultural and other transformed lands for energy, food, and materials (NCP 11-13). The expansion of human-dominated land uses has caused a reduction in the area of forests, grasslands, and other natural habitats. The reduction in natural habitat has been the largest single factor contributing to the decline of potential NCP over the past 50 years. Potential NCP has also declined for elements of material NCP that depend on forests or marine stocks (NCP 11-13). For

regulation of ocean acidification, a decrease in potential of terrestrial ecosystems to absorb CO_2 driven mostly by land-use conversion has been offset by an increase in potential to absorb CO_2 in marine systems caused by warming of the upper ocean driving an increase in net primary productivity.

Trends in Outputs

The overall global trend in output has declined for 9 of 16 NCP. Output for all regulatory NCP (NCP 2-10), with the exception of water quantity (NCP 6), show a decline in output. As water cycles through the earth system, its volume remains relatively unchanged (NCP 6), although in some cases it has been redistributed, leading to regional variation. The decline in output for many regulatory NCP is related to the decline in potential NCP. For example, the decline in pollination by wild pollinators follows the decline in habitat for wild pollinators. However, for some regulatory NCP, increases in anthropogenic pollution emissions is the main cause of the decline in environmental quality (air quality – NCP 3, climate – NCP 4, and water quality – NCP 7). The atmospheric concentration of CO_2 – the major greenhouse gas – increased by 30% in the last 70 years (IPCC 2014), driven by increased emissions. Much of the increase in GHG emissions from burning of fossil fuels has come from middle- and high-income countries, which is the dominant source of GHG emissions, while emissions from land-use change and reduced sequestration has come primarily from low-income countries (IPCC 2014, Pan et al. 2011).

The production of material goods (energy - NCP 11, food and feed - NCP 12, and materials - NCP13) is increasing globally. The increase in production has come mostly from large-scale commercial enterprises. Global timber production has increase 48% relative to 1970 levels (FAO 2018). Some of the increases in material goods production, however, may not be sustainable. Overfishing has led to declines in many fish stocks because harvest has exceeded population replacement rates (Jackson et al. 2001, Worm et al. 2006). So while fish harvests have increased over the past 50 years, many fish stocks have declined, which puts future fish harvests at risk. A similar pattern holds for medicinal, biochemical, and genetic resources (NCP 14), where the output of drugs, chemical compounds, and agro- seed industry, based on natural resources or mimicking the latter are increasing (Newman and Cragg 2012), while phylogenetic and intraspecific diversity are decreasing, thus limiting options for the future (NCP 18).

Non-material NCP trends are varied and different indicators of non-material NCP show different trends. For example, there has been an increase in visitation to natural areas, suggesting an increase in experience of nature (NCP 16). However, more people live further removed from nature as the percentage of population living in dense urban areas continues to rise suggests that, for many, the experience of nature is declining. In contrast to material NCP, for which there are regularly reported global figures that summarize important trends in output, there is little

agreement on what are the most appropriate measures of output, or regularly collected data with which to summarize global trends of non-material NCP.

Trends in Impact of NCP on Good Quality of Life

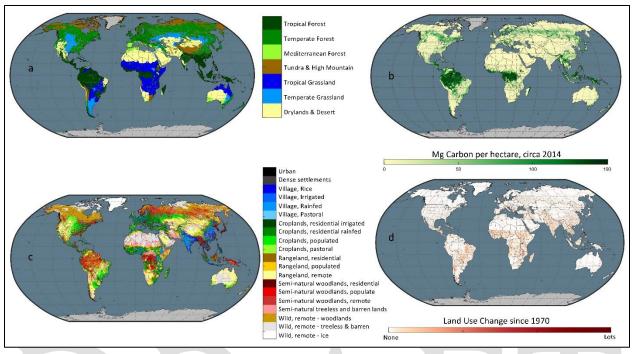
The overall global trend of impact of NCP on quality of life declined for 7 of 16 NCP, shows a mixed pattern for 6 NCP, and an unambiguous increase for 3 NCP. Changes in the impact of NCP on quality of life arise from changes in the co-production of NCP as well as from changes in factors more closely related to changes in institutions and anthropogenic assets, availability of substitutes, and human preferences. Increases in anthropogenic assets and human-made substitutes have offset the declines in potential NCP for some categories of NCP. For example, improvement in public health and sanitation measures have tended to reduce incidence of vector-borne diseases (NCP 10) even as potential NCP to regulate such diseases has declined.

The overall trends on impact on good quality of life across NCP are less negative than are the trends in potential NCP, in large part because of the interplay between changes in co-production and changes in social, economic, and political factors. The global trend for impact on good quality of life from material NCP (NCP 11-14) is positive, with the exception of reductions in malnutrition, from both under-nutrition and obesity (NCP 12). Nutrition problems do not arise from lack of ability to produce food. There has been a trend of rising calories per capita over the past 50 years (Alexandratos and Bruinsma 2012, FAO 2016b, FAO 2017). Increasing agricultural production is largely due to increasing yields resulting from the use of modern varieties, increasing application of fertilizers and other inputs, as well as from expansion of the area in crop production (Foley et al, 2011, Alexandratos and Bruinsma 2012). With the global increase in food production, impact on malnutrition shows that the number of stunted children has decreased from 165.2 million in 2012 to 150.8 million in 2017, a 9 percent decline (FAO 2018). Simultaneously, however, the prevalence of anemia among women of reproductive age, which has significant health and development consequences for both women and their children, has risen incrementally from 30.3 percent in 2012 to 32.8 percent in 2016, with no region showing a decline (FAO 2018). Further, the unequal distribution of food means that there are over 800 million people suffering from hunger and malnutrition (FAO 2017c), along with other nutrition problems arising from poor diets (Willett et al. 2019).

The overall trend for impact on good quality of life from regulatory NCP (NCP 2 - 10) is negative, with the exception of one indicator of water quality (NCP 7) and one indicator for pest regulation (NCP 10). These largely negative changes in the impact of NCP on good quality of life from regulatory NCP have been largely driven by declines in the co-production of NCP. For NCP 7, increased expenditure on water treatment has provided a substitute for decreases in water quality and the capacity of ecosystems to filter water, though poor water quality continues to have negative impacts on good quality of life.

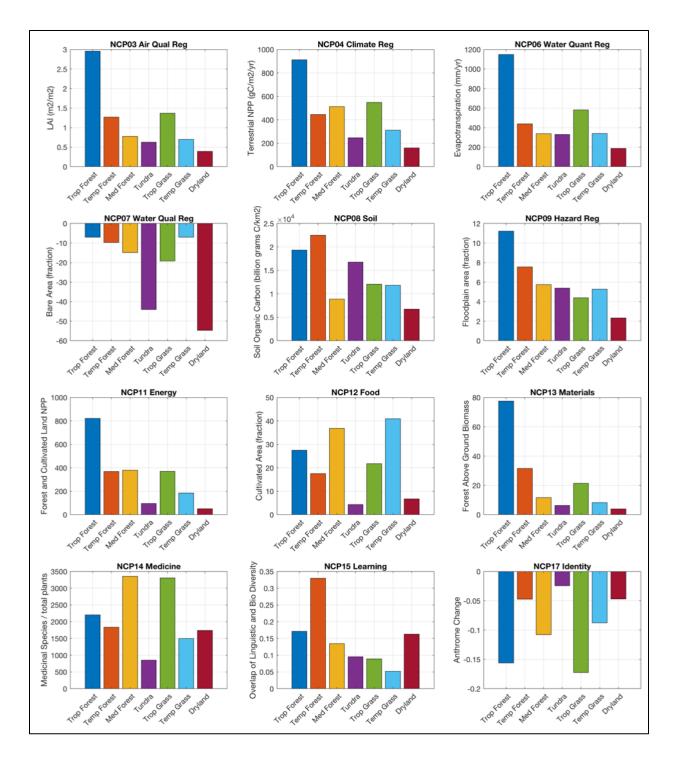
Tradeoffs among NCP

The pattern of increasing material NCP and declining regulatory NCP is largely a result of human management of ecosystems across the globe (MA 2005, Rodriguez et al. 2006, TEEB 2010). NCP tend to come in bundles that depend on human actions such as land-use decisions and come with trade-off among different NCP (Rodriguez et al. 2006, Raudsepp-Hearn et al. 2010b). For example, land intensively managed for agriculture produces large amounts of energy (biofuels), food, or materials, but often at the cost of reducing natural vegetation and habitat for native species, carbon sequestration and storage, water quality, and other regulatory NCP (Polasky et al. 2008, Bennett et al. 2009, Smith et al. 2012). Land use and land management choices that are good for habitat preservation and biodiversity also tend to be good for many regulatory NCP (Chan et al. 2006, Nelson et al. 2009, Polasky 2012). However, even among synergistic NCP, there will rarely be perfect alignment. As a result, targeting for the provision of one NCP will typically mean that other NCP will not achieve their maximum potential outcome (Polasky 2012, Lawler et al. 2014). Understanding the consequences of alternative land-use and land-management decisions, investing strategically in ecosystem restoration, and allocating land based on its contribution to multiple NCP, can generate simultaneous increases in the provision of multiple NCP (Polasky et al. 2008, Bateman et al. 2013, Lawler 2014, Ouyang et al. 2016).


Decisions made in one location at one time can have impacts across many regions both now and into the future (Rodriguez et al. 2006). Through international trade in commodities, there is virtual trade in carbon and water (e.g., Davis et al. 2010, Hanasaki et al. 2010, Peters et al. 2011, 2012, Dalin et al. 2012, Sato 2014, MacDonald 2015, Liu et al, 2017). Globalization and trade from distant demand can increase pressure on local ecosystems and on co-production of NCP (Chi et al. 2017, Wolff et al. 2017). Direct environmental linkages can also cause impacts across geographic regions and over time, as when there important impacts downwind (air quality regulation, NCP 3) or downstream (water quantity regulation, NCP 6, and water quality regulation, NCP 7), or through loss of habitat for migratory species (NCP 1).

2.3.5.2 Status by Unit of Analysis

For the vast majority of NCP, trends over the past 50 years in potential NCP, realized NCP, output, and impacts on good quality of life show significant differences by unit of analysis. In many cases, illustrated by crossing arrows in Figure 2.3.3, outputs move in different directions. For example, air quality, as measured by concentrations of PM2.5, has generally improved in high-income countries over the past 50 years while it has declined, often significantly, in low-and middle-income countries over the past 50 year. For other NCP, trends are either downward or upward but differ significantly in magnitude, illustrated in Figure 2.3.3 by two arrows in the same direction but with different length. For example, agricultural production has been generally increasing across the globe, but the extent of the increase varies widely across regions. In some


cases, global greenhouse gas concentrations (NCP 4) and ocean acidification (NCP 5), effects are global and show similar patterns across units of analysis. NCP with strong consistent trends across biomes include air quality regulation (NCP 3), which is increasing as LAI increases globally (Zhu et al., 2016), and soil (NCP 8), which has universally degraded from a pristine state (Van der Esch et al. 2017, Stoorvogel et al. 2016, IPBES 2018a). Landscape cultivation for agriculture has occurred across all biomes (Figure 2.3.4c), with the most agricultural land in temperate grassland and Mediterranean forest, followed by tropical forest, then temperate forest and grassland. Thus, as illustrated in Figure 2.3.5, potential for food production (NCP 12) is highest in temperate grassland. This is directly responsible for a decrease in potential for NCP that are more strongly related to intact habitat, such as habitat (NCP 1), options (NCP 18), pollination (NCP 2), pest regulation (NCP 10), and water quality regulation (NCP 7), which are lowest in the biomes in which agriculture is highest (Figure 2.3.5). Because there is little conversion to agriculture in tundra, and to some extent drylands, these biomes have the lowest potential to produce food but the most potential to produce habitat-reliant NCP. Though food is both cultivated and wild-collected, we use cultivated area as a global indicator in Figure 2.3.5 because the majority of global caloric production is cultivated.

Non-material NCP do not lend themselves to quantitative measures that can be assessed globally in the same way as regulating and material NCP. For Identity (NCP 17), recognizing that abrupt changes in land use negatively affects identity (Antrop 2005, Palang et al. 2011), we use historic land use change since 1970 as an indicator (Figure 2.4 d). Using a data proxy, we see that changes in tropical forest and grassland mean these biomes provide lower levels of identity NCP (Figure 2.3.5). In many places, land use change was more dramatic between 1920 and 1970 than from 1970 to the present (Klein et al. 2017). So for identity (NCP 17), the data proxy tells us there is plausibly a positive trend because potential NCP is less negative than it was in the preceding time period. Though current indicators and data proxies are weak, the help to recognize and track experience of nature in many all environments and over specific time periods.

Across terrestrial biomes globally (a), status and trends of NCP differ, yet some NCP co-vary. For example, biotic productivity is important for regulation of air (NCP 3), climate (NCP 4), and water quantity (NCP 6) and provision of energy (NCP 11) and materials (NCP 13); one indicator of biotic productivity is above ground biomass (b). NCP that rely on relatively intact ecosystems, such as habitat (NCP 1), pollination (NCP 2), regulation of pests (NCP 10), and maintenance of options (NCP 18) have better status in places with more semi-natural and wild landcover (c). Recent land use change (d) indicates reduced identity (NCP 17) and is relevant to trends in many NCP.

Figure 2.3.5 Global Distribution of Data Proxies Relevant to Selected Potential NCP NCP Status across biomes calculated using data proxies of the potential NCP indicators from Figure 2.3.5. Data were identified based on literature referenced in appendices and selected based on availability and alignment with subsection nature and other IPBES assessments. Few of the indicators proposed in previous research directly refer to existing datasets that are both global and spatially explicitly (Hattam, Atkins et al. 2015, Heink, Hauck et al. 2016, Maes, Teller et al. 2018, de Groot et al. 2010, Feld, Martins da Silva et al. 2009, Pongratz, Dolman et al. 2017), but

we aligned with these suggestions when possible. Average values were calculated for each data proxy over each biome. Data sources are listed in Table 2.3.3.

Biotic productivity is a central component of many NCP. Both energy (NCP 11) and materials (NCP 13) are produced on agricultural lands, but fuelwood and timber make up a substantial fraction of total stocks, so we based indicators on biotic productivity. Similarly, air quality regulation (NCP 3), indicated by leaf surface area, climate regulation (NCP 3), indicated by net carbon sequestration, and water quantity regulation (NCP 6), indicated by transfer of water to the atmosphere, are very high in tropical forests, very low in tundra and drylands, and moderate in temperate and Mediterranean forest and grasslands (Figure 2.3.5). Increasing biotic productivity means that, for most biomes, indicators of climate regulation (NCP 4), materials (NCP 13), and energy (NCP 11) are increasing. However, conversion of tropical forest (Figure 2.3.4b,d, Figure 2.3.5) counteracts this, leading to decreasing regulation of climate (NCP 4) and provision of energy (NCP 11) there.

Tropical forest, despite deforestation and downward trends for many NCP, continues to be incredibly important in providing for people. For most NCP, tropical forest is the biome with the highest potential for many NCP, including energy (NCP 11) and materials (NCP 13), as well as regulating services such as air (NCP 3), climate (NCP 4), and water distribution (NCP 6). Mediterranean forest and temperate grassland have the largest relative area converted to cultivated land, so while they are critical providers of food and feed (NCP 12), they provide lower levels of other NCP, particularly those linked to habitat intactness. Tropical grasslands have also been converted for food production, but because of their high biotic productivity (Figure 2.3.4b), like tropical forests they continue to provide relatively high levels of NCP related to biotic production. By contrast, tundra and drylands have naturally lower levels of biotic productivity (Figure 2.3.4b) and so provide low levels of productivity-linked NCP, but as a result they have also had substantially less conversion for food production and so have relatively high levels of NCP provided by intact habitat. Co-production of medicine (NCP 14) is indicated by the fraction of vascular plants known to be medicinal, reflecting both biotic presence and human understanding; this is highest in Mediterranean forest and tropical grasslands.

The ocean provides many NCP, notably in meeting food (NCP 12) demand. Global annual per capita consumption of fish has more than doubled since 1960 (FAO 2016a), amounting to an annual increase of 3.2% in fish production for human consumption (World Ocean Assessment 2016). This increase has largely come from aquaculture, which has offset a decline in potential food production from marine fisheries: there was an 11% decline in biomass of assessed fish stocks in the wild between 1977 and 2009 (Worm et al. 2009). Into the future, declines in wild-caught fish landings between 6 and 30% are predicted, depending on region, due to climate change (Cheung et al. 2013). Other key provisioning NCP from oceans are materials (NCP 13) and medicines (NCP 14), both of which have been increasing over the past 50 years. The extraction of materials such as pearls, corals, marine ornamental organisms (pet trade), and shells

has increased, particularly due to demand related to increased population and increased aquaria. In the case of marine-sourced medicines (NCP 14), 30,000 new marine medical compounds have been sourced from previously lesser known marine organisms in the last 50 years (Alves et al. 2018). Innovative technologies in the fields of discovery and development of marine drugs hold much promise for a future increasing trend in NCP 14 (Montaser and Luesch 2011).

Oceans also play a critical role in regulating ocean acidification through sequestration of carbon (NCP 5), regulating climate (NCP 4) and regulating natural hazards (NCP 9). For hazards, there has been a 13% decline in coastal protection since 1980, with serious consequences for damage by storms events and other natural disasters, which are increasing in frequency with climate change. In particular, destruction of mangrove forests through coastal degradation, and coral reefs through global warming and ocean acidification, is decreasing coastal protection, both due to reduction as a barrier to storm damage and also because carbon sequestration is declining (Heckbert et al. 2012). For ocean acidification and climate, ocean net primary production, which has increased by around 6 % globally between 1998 and 2007 (Behrenfeld et al. 2006, Le Quere et al. 2018), is helping to mitigate the effects of global warming and ocean acidification through the uptake of C and C02 by marine primary producers. However, the detrimental effects of ocean acidification are reflected in shellfish availability, which has declined under ocean acidification as a result of the uptake of atmospheric CO2 (Kroeker, et al. 2010).

The extensive three-dimensional nature of the oceans and their interactions with land and atmosphere alike (Hattam et al. 2015) results in large spatial variability and uncertainties in the magnitude and even the directions of changes in NCPs. However, what is clear is that maintaining healthy and diverse ocean ecosystems will be essential to sustain contributions of marine nature to people.

Freshwater systems get substantial attention for their contribution to food (NCP 12); freshwater fisheries are estimated to provide 40% of global fish production and be a particularly critical food and income resource for low-income and subsistence fishers (Lynch et al. 2016). Within freshwater systems, water quantity regulation (NCP 6) occurs largely through the effects of vegetation on flow speed (Montakhab et al. 2012) and on channel structure, which can in turn affect flow speed (Corenblit et al. 2011). Freshwater systems are also critical for regulating water quality (NCP 7), as they account for about 20% of total global denitrification (Seitzinge et al. 2006). Overall, in-stream processing has probably increased because nutrient loading has increased. (Mulholland et al. 2008). Freshwater systems are a net contributor to carbon emissions (Webb et al. 2018, Raymond et al. 2013). Freshwater systems also provide materials (NCP 13) such as mussels, historically used for buttons, and are key to learning (NCP 15), experience (NCP 16) and culture and identity (NCP 17) for many (Lynch et al. 2016). However, freshwater biodiversity is declining rapidly and dramatically, suggesting that provision of many NCP from freshwater systems are declining and will continue to do so (Loh et al. 2005).

Urban areas also provide many NCP, with green spaces such as parks, street trees, and riverbanks providing both regulating and non-material NCP, and a growing body of literature evaluates and assesses these NCP (Keeler et al. 2019, Hartig and Kahn 2016, Elmqvist et al. 2013, Luederitz et al. 2015, Haase, et al. 2014). Tradeoffs among NCP in urban areas are often strong: urban trees, for example, provide cooling (NCP 4) (Zardo et al. 2017), stormwater control (NCP 6) (Berland et al. 2017), and may improve mental health (NCP 16) (Keeler et al. 2019), but also require substantial water resources (NCP 6) (Pataki et al. (2011) and may be net contributors to air pollution (NCP 3) through volatile organic compounds and pollen (Janhäll et al. 2015). Though contact with nature may be decreasing overall, in urban areas there is an increasing demand for parks and green areas that are seen by many as supporting the identity of the town and its people (NCP 17), although there are many debates about the unequal access to green areas or parks by urban dwellers depending on wealth (Tang 2017, Willemse 2018). A global study on visitation of green areas and recreation parks shows that the highest demand for outdoor recreation in both rural and urban areas can be found in Canada, USA, Scandinavia, Spain, France, the Netherlands and Switzerland, given high levels of per-capita GDP and thus possibilities to participate in outdoor recreation (Wolff et al. 2017). For water quality (NCP 7), for which increased urbanization and bare ground decrease provision, there is a decreasing trend.

Agricultural areas exhibit the diverse role of human interventions across regulating, material, and non-material NCP. Agroforestry management in the tropics, for example, can simultaneously maintain high levels of biodiversity while providing materials (NCP13), medicines (NCP 14), and learning processes for children (NCP 15) in addition to food production (NCP 12). IPLCs practices of fresh water management (NCP 7) are illustrated in oases (Battesti 2005), irrigated rice fields (Conklin 1980, Setelle 1998), and cultivation on mounds in flooded inundated tropical savannahs (McKey et al. 2014, 2016). Contributions of generations of IPLCs to the selection, nurturing, and diversification of local animal landraces and plant varieties is widely recognized (Jarvis et al. 2011, Bellon et al. 2017, FAO 2007), as is the design of non-industrial agroecosystems. Homegardens and agroforestry systems across the globe contribute to conservation and use of agricultural biodiversity. Diverse examples of IPLC contribution to the management and conservation of genetic resources include Soudano-Sahelian savannahs and the large diversity of African cereals (Jika et al. 2017), taro horticulture in the pacific (Caillon et al. 2006), and wild yam management by Pygmee hunter gatherers (Dounias 1993). These practices are essential for not only the production of food and other directly consumed NCP, but also to maintain future options for the planet (NCP 18).

2.3.5.3 Status and Trends of Each NCP

NCP 1: Habitat Creation and Maintenance

Habitat continues to be in significant decline globally (Chapter 2.2, Butchart et al. 2010). The extent of protected and intact habitat globally provides a critical indictor of NCP1. Many indicators of change in habitat quantity and quality exist, and these have been the subject of numerous reviews (e.g. Geijzendorffer et al. 2016). Change in habitat quantity is best measured as the change in the extent of suitable habitat (ESH); measures of habitat quality in contrast benefit from including some measure of species composition. Recent evaluations have used the Biodiversity Intactness Index (BII) as a surrogate measure (Scholes and Biggs 2005). ESH measures the extent of suitable habitat relative to a reference year whereas BII indicates the compositional intactness of local communities in comparison to an undisturbed state. It is unclear how much habitat creation and maintenance is required to provide NCP. Some have proposed habitat conservation targets of 50% (Wilson 2016, Dinerstein et al. 2017, Willett et al. 2019); 90% (ranging between 30-90%) has been proposed for BII (Steffen et al. 2015). ESH and BII in combination speak to status and trends of habitat quantity and quality. In combination, these indicators suggest that only four biomes are above conservation thresholds: Tundra, Boreal forests/taiga, Tropical and sub-tropical moist broadleaf forests, and Mangroves (Willett et al. 2019). In contrast, Mediterranean habitats, temperate grasslands, and flooded grassland and savannas are well below either target and continue to decline. Chapter 2.2 discuses status and trends in nature in more detail. Many biomes, particularly those at high latitude, are under increasing threat and loss due to climate change and land use change. Mid-latitude biomes have experienced the greatest degree of habitat loss but are also where the greatest agricultural abandonment may be permitting some habitat restoration (Ramankutty et al. 2008).

NCP 2: Pollination and Dispersal of Seeds

An extensive global review was recently performed by more than 77 scientists for the IPBES thematic assessment on pollinators, pollination, and food production (IPBES 2016, Potts et al. 2016a, 2016b). Declines in pollinator diversity have been recorded and are expected to continue globally. Currently, 16.5% of vertebrate pollinators are threatened with global extinction (IPBES 2016, Potts et al. 2016a, 2016b), and declines in bee diversity over the last century have been recorded in industrialized regions of the world, particularly northwestern Europe and eastern North America (Biesmeijer et al. 2006, Cameron et al. 2011, Bartomeus et al. 2013, Carvalheiro et al. 2013, Koh et al. 2016). Evidence on the drivers of pollinator loss suggests a decline in pollinator diversity in Latin America, Africa, and Asia (Garibaldi et al. 2011, Potts et al. 2016b). Propagule dispersal is also in decline globally. Currently, 26% of vertebrate seed dispersers are globally threatened (Aslan et al. 2013). Species diversity reflects the potential of nature to provide pollination and dispersal services (Garibaldi et al. 2013), while the abundance of organisms (both managed and wild) is used here as an indirect measure of the output (as well as pollen deposition). Usually, sites with more species diversity have also greater abundance (Garibaldi et al. 2013).

These declines in animal pollinators could have significant negative consequences for the level and stability of pollination of crop and wild plants, and therefore good quality of life (IPBES 2016, Potts et al. 2016a, 2016b). Nearly 90% of wild flowering plant species depend, at least in part, on the transfer of pollen by animals. These wild plants critically contribute to most NCP. Moreover, the production of more than three quarters of the leading types of global food crops rely to some extent on animal pollination. An estimated 5-8% of global crop production would be lost without pollination services, representing US\$235-577 billion annually on the basis of 2009 market prices and production (and inflated to 2015 US\$) (IPBES 2016, Potts et al. 2016a, 2016b). Furthermore, changes in human diets and a disproportionate expansion of agricultural land are taking place to fill this shortfall in crop production by volume (Aizen et al. 2009). Important global health burdens from both non-communicable diseases and micronutrient deficiencies are thus also expected due to pollinator loss (Smith et al. 2015). Health impacts can be greater in areas with micronutrient deficiencies, such as Southeast Asia, where 50% of the production of plant-derived sources of vitamin A requires biotic pollination (Chaplin-Kramer et al. 2014). However, these can be partially compensated by human choices of food and agricultural management. User groups vary greatly in their capacity to compensate the loss of pollinator-dependent food with other nutritious foods. Low-income groups have less ability to compensate. It is unclear the degree to which humans can compensate for the loss of pollinator diversity.

NCP 3: Regulation of Air Quality

Air quality has declined globally as emissions of fine particulate matter, black carbon, nitrogen and sulfur oxides, and ozone have increased (OECD 2016). Overall, increases in air pollution are higher in Asia, but reductions in air pollution have occurred in previously industrial regions of America and Europe. Globally, asthma and allergies resulting from air pollution have increased as well (Kim et al. 2013). Nature contributes to regulation of air quality emissions by sequestering these emissions; it is well-established that deforestation, biomass burning, and intensive agriculture release l air pollutants Lelieveld et al. 2015). It is also well established that vegetation has the potential to prevent emissions by protecting soils to avoid air dust emissions and trapping some air pollutants in plant parts. There is also potential for nature to retain air pollutants on leafy surfaces, though the extent of this is probably small (Keeler et al. 2019). Conversely, both flora and fauna frequently emit allergens, though more biodiverse species seem to reduce allergy intensity (Cariñanos and Casares-Porcel, 2011, Cresti and Linskens 2000, Janhäll et al. 2015). Many of these functions are provided by well-developed vegetation structure, so nature's contribution to retaining and preventing emissions of air pollutants has been compromised through burning, deforestation, and agriculture (Lelieveld et al. 2015). However, at a global level, leaf area has increased (Zhu, Bi et al. 2013), so air quality regulation may be increasing. Assessment of air quality regulation by nature has usually been undertaken locally or nationally and has mostly been done in developed countries. Example findings of

health benefits from air pollution retention by urban trees were \$227.2 million Canadian dollars and \$3.8 billion US dollars (Nowak et al. 2006, 2018). In England, one study estimated net pollution absorption by woodlands reduced the deaths related to air pollution by 5-7% and hospital admissions by 4-6%, resulting is costs savings of £17,000-£900,000 (Powe and Willis 2004).

NCP 4: Regulation of Climate

Atmospheric concentrations of CO2 have increased by 30% in the last 70 years to levels unprecedented in the modern era, and other greenhouse gases have also increased (WMO 2016, IPCC 2014). This has large and negative consequences for humanity (IPCC, 2018). Ecosystems are both a sink and source of CO2 and other greenhouse gasses (Le Quéré et al, 2018). On land, ecosystems sequester carbon in vegetation and soils, and though there is substantial year-to-year variation, over the last 50 years terrestrial carbon sequestration has probably increased a small amount (Le Quéré et al, 2018). In the oceans, biotic and abiotic processes sequester carbon, and this has also increased (Le Quéré et al, 2018). Land use change, especially deforestation, burning, and conversion of agriculture, is a major source of CO2 emissions, nearly offsetting land-based sequestration (Le Quéré et al, 2018). The world's forests are a major sink of CO2 (Pan et al. 2011), and nature's contribution to climate regulation decreases as forests are cut down and also used intensively (Erb et al. 2017). These changes are not uniformly distributed across the global - global tree cover increased 7.2% from 1982-2016 (Song et al. 2018), but the area of tropical forests - the terrestrial ecosystems with the largest carbon stocks - has declined (Keenan et al. 2015, Song et al. 2018). Overall, the contribution of tropical forests to the global carbon cycle has been, however, nearly neutral (Mitchard 2018).

ILK is instrumental in maintaining sustainable environments and practices that contribute to climate regulation and its impact on good quality of life through (i) natural resources management, (ii) physical infrastructure, (iii) livelihood strategies, and (iv) social institutions. Reducing the pace and extent of land use change is one way that IPLCs contribute to maintaining nature's regulation of climate. The lifestyles and practices of IPLCs contribute to maintaining ecologically intact landscapes on ~38 million km2, over a quarter of the world's land surface and including about 40% of all terrestrial protected areas (Garnett et al. 2018). In addition, ILPC practices enhance climate regulation in many landscapes. Agroforestry as practiced by rural communities in South America (3.2 million km2), sub-Saharan Africa (1.9 million km2), and Southeast Asia (1.3 million km2), for example, maintains complex associations of carbon-storing plants and soils.

NCP 5: Regulation of Ocean Acidification

The ocean has the capacity to absorb CO2 and thereby mitigate ocean acidification. In marine ecosystems, marshes, mangroves, and seagrass meadows take up CO2 from seawater; carbon

stored in these coastal environments is termed "blue carbon" which is locked into organic matter that can be preserved for a long time and may help offset ocean acidification locally. The ocean's regulation of acidification also includes assimilation of C02 by phytoplankton, as well as the capacity of seaweed aquaculture to affect pH and provide refugia for marine organisms with shells comprised of calcium carbonate (these organisms are termed calcifiers and include corals, crustaceans and several molluscs). Dense seaweed beds and kelp forests represent productivity hot-spots with associated high pH when photosynthesis reduces CO2 concentrations (Duarte 2017). They may play a role in protecting calcifiers from projected ocean acidification. With warming of the upper ocean, the geographical range of nitrogen-fixing phytoplankton is likely to expand, so that net primary productivity may increase (although the phytoplankton community may be comprised of a larger proportion of small-celled phytoplankton) (Morán et al. 2010, Duarte 2017). Ocean acidification is especially problematic for corals and shellfish, because it prevents them from properly developing their skeletons and shells. Shell fish availability has declined under ocean acidification as a result of the uptake of atmospheric CO2 (Kroeker, et al. 2010). Further, tropical coral reef ecosystems provide food, income, and coastal protection for around 500 million people throughout tropical coastal zones. The annual economic damage of ocean-acidification-induced coral reef loss by 2100 has been estimated to be US\$500 to 870 billion depending on the level of CO2 emissions scenarios (Brander et al. 2012), and the corresponding global economic loss of shellfish production due to ocean acidification is estimated to be US\$6-10 billion US\$ per year (Narita et al. 2012).

NCP 6: Regulation of Freshwater Quantity, Location, and Timing

Freshwater is critical for human wellbeing, and it is a limited resource distributed unevenly across the globe by natural and human-driven processes. Human demand for water is increasing worldwide, so water scarcity is increasing even when water availability does not change (Haddeland et al. 2014, Brauman et al. 2016). These impacts are unevenly distributed across social and user groups (WWAP 2015). Nearly 75% of irrigated area and 50% of the population globally are sited in places where more than 75% of renewable water resources are consumed annually, seasonally, or in dry years (Brauman et al. 2016). Changes in water availability are largely a result of changes in climate, evapotranspiration, and in human water extraction and river regulation (Milliman et al. 2008). Ecosystems regulate freshwater by transferring water from the soil to the atmosphere, interacting directly with the atmosphere through processes such as cloud water interception and shading, developing flow paths from the ground surface through the soil, and physically interrupting the flow of surface water (Brauman et al. 2007). The impact of land cover on water regulation occurs local and regionally through changes in evapotranspiration as well as locally via impacts on runoff (Beck et al. 2013; van Dijk et al. 2009). In total, river discharge globally has remained constant over the past 50 years, though in about one-third of rivers discharge has changed by more than 30% (Milliman et al. 2008). Trends in groundwater vary significantly by region, with groundwater increases in areas of deforestation and cropland expansion (Rodell et al. 2018). Global trends in deforestation, replacement of perennial vegetation with annual (un-irrigated) cropland, and urbanization have likely increased runoff quantity and also flow speed (Sterling et al. 2013, Trabucco et al. 2008). Modeling studies have been unable to unambiguously attribute large-scale measured changes in runoff and evapotranspiration to vegetation change (Ukkola and Prentice 2013, Haddeland et al. 2014).

NCP 7: Regulation of Freshwater Quality

Poor water quality is a critical source of illness in people, irrigation with saline water is a global threat to agricultural productivity, clean water is necessary for many types of manufacturing, and cultural and recreational enjoyment of water bodies is tightly linked to water quality (Pruss et al. 2002). Though access to clean water is increasing and water-borne disease is decreasing, these trends are uneven across user groups (WHO and UNICEF 2017, Ezzati et al. 2002). Globally, water quality has decreased, though some regions show improved water quality (UNEP 2016). Nutrient loading from anthropogenic sources, particularly agriculture and wastewater, has increased dramatically over the past 50 years, leading to increased eutrophication (UNEP 2016, Smith et al. 2003). Industrial water pollution has decreased in some regions but increased in others (UNEP 2016). Nature can both contribute to and remove constituents in water. Ecosystems may provide direct additions of material to water, and through processing, uptake, and sequestration, they can also remove particles, pathogens, nutrients, and chemicals from water (Brauman et al. 2007). Whether a change in water quality is considered beneficial depends on the suite of desired uses of water (Keeler, et al. 2012; Bernhardt 2013). For example, mussels remove suspended solids, bacterial, and phytoplankton from the water column, which is frequently interpreted as a benefit, but invasive zebra mussels in North America do so to the extent that waters become very clear and cannot support fish or other aquatic life (Macisaac 1996). The effectiveness of natural pollutant removal, such as through vegetated strips adjacent to waterways or in or wetlands, varies tremendously (Mayer et al. 2007, Sweeney and Newbold 2014).

NCP 8: Formation, Protection, and Decontamination of Soils

Soil degradation, particularly degradation caused by erosion, reduces crop productivity (Panagos et al. 2018, Scherr 2000), and the consequences are severe for low- and middle-income user groups who cannot compensate with anthropogenic substitutes (Blanco-Canqui and Lal 2010). Land degradation has reduced agricultural productivity on 23% of global terrestrial area and affects 3.2 billion people (IPBES 2018a). Nature contributes to better soil quality through improvement in soil biodiversity, mainly by enhancing soil organic carbon (SOC), which is a strong determinant of soil quality, soil health and crop productivity. SOC plays a crucial role in soil formation, soil protection, and other soil functions and derived benefits (FAO and ITPS 2015, FAO 2017a, Gaiser et al. 2013). Globally, poor soil management practices have led to

declines in soil carbon, biodiversity, and nutrients and to an increase in soil erosion, compaction, contamination, sealing, crusting and desertification, resulting in soil degradation and poor soil quality (FAO and ITPS 2015,Lal 2015a, IPBES 2018a). The world has lost an estimated 8% of soil carbon globally due to land degradation, mostly because of agriculture (Sanderman et al. 2017, Van der Esch et al. 2017, IPBES, 2018a). These trends are not uniform globally, however; soil carbon stocks have improved in North America, for example, where widespread adoption of conservation agriculture (e.g. reduced tillage and improved residue management) has improved soil organic carbon stores on some cropland (Pierzynski and Brajendra 2017, FAO and ITPS 2015, Lal 2015b). Despite discrepancies in country and regional estimates of soil organic carbon stocks (Köchy et al. 2014, Hengl et al. 2017, Hartemink et al. 2010, Sanchez et al. 2009), FAO (2017b) suggests that more than 60% of the 680 billion tonnes of carbon is found in ten countries: Russia, Canada, USA, China, Brazil, Indonesia, Australia, Argentine, Kazakhstan and Democratic Republic of Congo.

NCP 9: Regulation of Hazards and Extreme Events

Hazards, including fires, inland and coastal floods, and landslides, are increasing in both incidence and impact over time (Guha-Sapir et al. 2016). While the number of disasters and people affected varies substantially year to year, close to 350 major disasters affecting close to 600 million people were reported in 2016, and the overall trend has been increasing over time (Guha-Sapir et al. 2016). Changing drivers, including the risks of climate change and locations where people live, are increasing both the incidence and impacts of disasters (Van Aalst 2006). Hazards have a greater impact on more vulnerable social groups, and lower income countries and those with less robust institutions tend to be more affected by disasters (Kahn 2005, United Nations Human Settlements Programme 2003). Natural systems have the potential to reduce the incidence or impact of fire, floods, landslides, waves, and other destructive natural hazards. Nature and nature-based features can both increase and reduce disaster risk by increasing, preventing, or buffering the impacts of hazards and by changing people's exposure to hazards (Renaud et al. 2013). For fires, floods, landslides, and coastal hazards, the physical structure of vegetation can serve a protective role by physically blocking hazards such as waves or rockfall, roots can help secure soils and sediments, stabilizing the abiotic elements of an ecosystem, and areas dedicated to natural ecosystems may physically displace people and structures that would be damaged by natural hazards. Ecosystems also help reduce hazards and their impacts by dissipating energy, moving water, and regulating fuel for fires. Nature-based approaches to disaster risk reduction are becoming increasingly appealing, but conversion of landscapes including shoreline hardening, floodplain development, and detrimental forest management that increases hazard impact remains widespread (Arkema et al. 2017).

ILK enables some ILPC not only to anticipate, manage, and respond to natural hazards such as tsunamis (Lauer 2012), cyclones (Paul and Routray 2013), and heavy rains (Roncoli et al. 2002).

In many cases, responses to hazards reflect the magnitude of the perturbation. Papua New Guineans, for example, shift their farming practices in response to short-term frosts but engage in long-distance migration in response to long-term ones (Jacka 2015). In addition, knowledge of wild or semi-domesticated plants provides survival foods in times of resource shortage (Yates and Anderson-Berry 2004) (see Appendix 1 ILK_Hazard). The long-term transfer of knowledge, experiences, and practices related to disasters provides rsilience to many IPLCs, though this is eroding in many areas experiencing cultural, inter-generational, and economic changes.

NCP 10: Regulation of Organisms Detrimental to Humans

Natural regulation of pests and pathogens improves food security, economic security, and human health. Weeds, animal pests, pathogens and viruses reduce production of food and cash crops worldwide. The absolute value of crop losses and overall proportion of crop losses have been steady over the past 40 years, fluctuating between 20-30% depending on crop and region (Oerke 2006). Globally, chemical controls such as herbicides and pesticides have increased by 15-20% (Oerke 2006), often substituting or replacing pest and disease regulating NCP co-produced by diversified cropping systems (within-field or alpha diversity) or cropping landscapes (betweenfield or beta diversity) (Tscharntke et al, 2016). Vector-borne diseases infect more than 1 billion people per year, accounting for more than 17% of all infectious diseases, with more than 1 million deaths recorded from vector-borne diseases including malaria, dengue, schistosomiasis, leishmaniasis, Chagas disease, yellow fever, lymphatic filariasis and onchocerciasis (Karesh et al. 2012). Trends in disease incidence are variable, with some diseases on the decline (malaria mortality -40% globally) but many more increasing (dengue +30-fold increase, Lyme disease currently the most common tick-borne disease globally) (Jones et al, 2008, WHO 2014). Climate change poses risks for crops and human disease, as habitat and infection ranges of crop pests (Bebber et al. 2013) and disease vectors (Kilpatrick and Randolph 2012) expand. Loss of biodiversity could either increase or decrease disease transmission, though mounting evidence suggests that biodiversity loss increases disease transmission (Keesing et al. 2010). Overall, despite many remaining questions, current evidence indicates that preserving intact ecosystems and their endemic biodiversity should generally reduce the prevalence of infectious diseases (Keesing et al. 2010).

NCP 11: Energy

Bioenergy is renewable energy made from materials derived from biological sources. Biomass feedstocks are organic material that has stored energy from sunlight in the form of chemical energy and include plants, residues from agriculture or forestry, and the organic components of municipal and industrial wastes (Dale et.al 2016). More than 2 billion people rely on wood fuel to meet their primary energy needs (Schiermeier et.al, 2008), and harvest and sale of biofuels often make up a a substantial portion of household income (Angelsen et al. 2014). Use of

biofuels, including biofuel crops (Koh et al., 2008) and fuelwood (FAO 2018), is growing rapidly around the world. About 90% of bioenergy is consumed for traditional use - fires for household heating and cooking, but in recent years biomass has become a source of electricity, liquid fuel, and heat for towns and cities. It has been estimated that the world's generating capacity from biomass is at least 40 GW per year as of 2000 (WEA 2000), and the extent of agricultural land on which bioenergy is produced is increasing (Alexandratos and Bruinsma 2012).

NCP 12: Food and Feed

Globally, production of food is high and increasing, though the magnitude of these trends varies around the world. For agricultural crops, both harvested area and yields have increased, and meat and milk production have both increased over the past 50 years (Alexandratos and Bruinsma 2012), yet meat and milk production have increased ten- and seven-fold in Asia, while only 81% and 8% in Europe. Global fish catches increased by around 50% over the last 50 years, and cultured (farmed) fish production escalated from insignificant fractions of wild catch to comprise ~40% of total seafood production in 2015 (FAO 2016a). In the last ten years, wild fish catch declined by 10% whereas farmed fish/seafood increased by 20%. (Worm et al. 2009, FAO 2016a). Fish catch potential is expected to vary in both magnitude and direction depending on temperature, oxygen and pH changes, which are projected to be different in different parts of the globe (Cheung et al. 2016).

Despite these increases in production, the potential of nature to sustainably contribute to food production is declining. Land degradation has reduced agricultural productivity on 23% of global terrestrial area and affects 3.2 billion people (IPBES 2018a). All taxa of wild crop relatives have decreased, with an estimated 16–22% of species predicted to go extinct and most species losing over 50% of their range size (Jarvis et al. 2008). Similarly, fish catch potential, a measure of fisheries productivity as a function of primary production and distribution of fish and invertebrates (Cheung et al. 2010), is variable across areas but has decreased substantially, with 7-36% loss in catches estimated for 2000 due to overfishing (Srinivasan et al. 2010), and there is little scope for expanding fisheries into the future (FAO 2016a).

The impact of these trends in output as well as potential NCP on quality of life is variable. While current food production could largely meet global caloric needs, unequal distribution of calorie uptake among regions, high levels of food waste, and intensive production of a limited number of crops in large quantities (cereals, starchy root crops, meat and dairy, oilseeds, and sugar) mean that malnutrition remains prevalent. Hunger has decreased globally since 1970, though there are still over 800 million people facing facing chronic food deprivation and those numbers have incrased slightly in the past decade (FAO 2017, FAO 2018). The prevalence of undernourishment is highest and worsening in many regions of Africa, affecting almost 21% of the population (more than 256 million people); The prevalence of undernourishment is estimated to be 5% in

South America and 11% in Asia (FAO 2018). Malnutrition has increased since 1970, driven by increasing obesity, countered in many regions by decreasing undernutrition (FAO et al. 2017). National food supplies worldwide are now more similar in composition than previously, leading to the establishment of a global standard food supply, which is relatively species-rich in regard to measured crops at the national level, but species-poor globally (Khoury et al. 2014, Herrero et al. 2017). Dietary diversity, notably in fruits, nuts, and vegetables, required in a low health risk diet (Johns et al. 2013, Powell et al. 2015, Willett et al 2019). Food production systems that integrate more diversity and less chemical inputs such as agroforestry systems could improve diversified diets and reduce impacts on climate, soil, water quality, and habitat (Springmann et al. 2018). For fishers, demand for fish resources is increasing, likely with reduced benefits in terms of livelihood per fisher (McCluskey and Lewison, 2008, Worm et al. 2009).

NCP 13: Materials and Assistance

The production of a majority of material resources has increased globally since 1970, though there is considerable diversity among them. The production of materials extracted from forest ecosystems such as timber (round wood production), natural gums, and resins has increased since 1970 (FAO 2018). Likewise, production has increased of a majority of fiber crops derived from agro-ecosystems such as cotton, agave, coir, and silk; production of some other fibers has decreased (hemp, sisal, bastfibers) or remained relatively constant (jute, manila) (FAO 2018). Although cotton growing area has remained constant, cotton production has nearly doubled since 1961 due to improved seed varieties, irrigation, and the use of pesticides and herbicides (Cotton Australia 2016). For many materials, the trend in recent decades has been towards more heavily managed systems. For example, timber is increasingly harvested from forest plantations, traded wildlife such as birds, reptiles, and aquarium fish are increasingly produced in captivity, and most of the traded ornamental plants, including orchids, are now produced in cultivated systems. Trends in provision of different material resources vary around the world. Forest plantations have increased in boreal regions, Central America, South America, and South and Southeast Asia (Keenan et al. 2015). Collection of materials can decrease the potential for provision over the long term. For example, one cause of coral reef degradation is extraction for aquarium use (Jackson et al. 2001).

Materials impact quality life by providing shelter, providing raw materials for many industries such as textiles, furniture, and crafts, are sources of inspiration, and create employment and provide income. Globally total employment in the forestry sector was about 13.2 million in 2011, a decline of about six percent from 2000 (FAO 2014). Trends in forestry employment vary across regions. Western and Eastern Europe, North America, and the developed Asia Pacific region have seen major declines in forestry sector jobs, due in part to the global economic crisis in 2008-2009, replacement of manual work with machinery (Europe, Australia, New Zealand), increasing import of furniture from the other regions (North America), and decreasing production (Japan)

Unedited draft chapter 31 May 2019

(FAO 2014). Other regions, however, have increased forestry employment. Developing Asia-Pacific, Latin America and the Caribbean, North Africa, and Western and Central Asia combined created 1.1 million new jobs between 2000 and 2011 (FAO 2014). This increase occurred mainly in China, India, Vietnam, and Thailand as wood processing and pulp and paper industries expanded rapidly, primarily for export. Employment in the global textile industries, including cotton cultivation, is increasing.

DRAFT

Known popularly as 'Himalayan Viagra,' the caterpillar fungus (*Ophiocordyceps sinensis*) is the world's most expensive biological commodity (Shrestha and Bawa, 2013). Used in traditional Chinese medicine and recently embraced as an aphrodisiac and a powerful tonic to enhance libido, the caterpillar fungus is found only in high-elevation pastures in the Himalayas and Tibetan plateau. It is an endo-parasitic complex formed when the pathogenic fungus parasitizes the caterpillars of ghost moths (Hepialidae) found above 3500m. The tiny 2-6-inchlong fruiting bodies, each weighing less than a half gram, are harvested by hundreds of thousands of mountain dwellers in China, India, Nepal, and Bhutan every year from May to July (Shrestha and Bawa, 2013).

Harvest and sale of the caterpillar fungus supports poverty-stricken local people, accounting for more than 70% of many people's total income (Shrestha and Bawa 2014). However, though the fungus has brought economic prosperity to regions where livelihood options are limited, its harvest has created social and environmental problems. Unsustainable over-harvest and climate change have reduced the number of caterpillar fungus collected each year, leading to conflict between communities over resource rights (Hopping et al., 2018). Increased collection effort has sent more people further afield, degrading grassland habitats. In response, collection and trade of caterpillar fungus has been banned in India and regulated in Nepal and Bhutan yet harvest and trade into the multi-billion dollar international market as continued unabated.

NCP 14: Medicinal, Biochemical, and Genetic Resources

Materials derived from organisms (plants, animals, fungi, microbes) for medicinal and veterinary purposes contribute to health, income, and cultural development, medical systems being a set of culture associated with a range of relational values (MA 2005). These products represent full

organisms, portions of organisms, and genetic resources including genetic information (Richerzhagen, 2010). Identifying natural products and transforming them into Natural Medicinal Products (NMPs) depends both on human capacity to identify species and link them to specific illnesses and the availability and quality of these species. Tens of thousands of medicinal plants are used (Hamilton 2004, Schippman et al. 2006, Leaman 2015). Globally, more than 25% of new drugs are derived from natural products, with more than 70% of drugs to treat cancers derived directly from natural medicinal products (Newman et al. 2003, Newman and Cragg, 2012). More than 20% of modern drugs used for all diseases globally are based on leads from natural molecules, identified by science or based on ILK; these include aspirin, vincristine, and taxol. The search for new medicines has concentrated in plants; 70,000 medicinal plants species, about 17% of the world known flora, are estimated to be used at the global level (Schippmann et al. 2006 - IUCN Medicinal Plants Specialist Group). There are 656 flowering plant species used to treat diabetes (KEW, 2017), which affects an estimated 422 million adults. In addition, terrestrial animals, fungi and ocean biodiversity have potential to provide medicinal resources, but few taxa have been tested or explored thoroughly (Colwell 2002). Over the last 50 years, more than 30,000 new compounds and more than 300 patents have been derived from marine species (Alves et al. 2018). Similar patterns are known for fungi, based on existing Asiatic pharmacopeia, which has been little studied to date. Certain taxa have proven to be more likely to have useful compounds. ILK or scientific screening approaches use taxonomic cues and concentrate their efforts in specific biota to identify natural medicinal products (Salis Lagoudakis et al. 2012, 2014).

Though discovery and use of new drugs and compounds based on nature has increased (Newman et al. 2003, Newman and Cragg, 2012), this is largely due to advances in techniques over the last 30 years as well as major discoveries in new areas of investigation such as marine products or fungi (Newman and Cragg 2012, Alves et al. 2018). Declines in biodiversity mean we are losing genetic resources, with consequent loss in the potential for new discovery of drugs and biochemical compounds (Richerzhagen 2010). It is estimated that 21% of known medicinal plants are threatened (Schippmann et al. 2006). Loss of knowledge, especially traditional orally-transmitted pharmacopeia, also threaten the potential to identify new medicines (Aswani et al. 2018). The intersection of global plant richness (Kreft et al. 2007) with known plant medicinal species (Pironon et al., in review) is an indicator showing areas with differential potential across units of analysis and ecosystems.

The impact of natural medicinal resources on quality of life includes direct impacts on health as well as income generated by traditional medicine production and the pharmaceutical industry. It is estimated that 70–80% of people worldwide rely chiefly on traditional, largely herbal medicine to meet their primary healthcare needs (Farnsworth and Soejarto 1991, Hamilton 2004). In 2003, the WHO estimated the annual global market for herbal medicines to be worth US\$60 billion, and by 2012 the global industry in Traditional Chinese Medicine alone was reported to be worth

US\$83 billion (KEW 2017). In 2006, the pharmaceutical market comprised US\$ 640 billion, with 25–50% of the products derived from genetic resources; it is estimated that the pharmaceutical industry earns about US\$32 billion a year in profits from products derived from traditional remedies (Richerzhazen 2010, 2011). The agricultural seed market's value was US\$30 billion in 2006, and all of its products are derived from genetic resources from nature (TEEB 2009a).

NCP 15: Learning and Inspiration

Proximity to nature enhances learning processes, and the richness of nature is the basis of learning processes including subsistence, science, art, and ensuring humanity's basic and nonmaterial needs (material protection, food, health, communication, culture, religion etc.) (Ellen 2002, Descola 2013, Kuo, et al. 2019). Direct sensorial experiences with nature are critical to learning and ensuring psychological health (Dounias and Aumeeruddy-Thomas 2017, Cox et al. 2017). An indicator of nature's importance to learning is shown by the correlation between high cultural diversity and areas of high biodiversity (Maffi 2002, Stepp et al. 2004, IPBES 2018a). Mimicry of nature is the origin of many scientific findings: chemical dyes and colors (Galan 2007), bio-inspired medicines (Newman and Cragg 2012), and sustainable bio-materials (Hunter 2017). Patterns in nature also inspire thinking processes, such as phylogenetic trees (Hinchliff et al. 2015). Across all cultures, nature is symbolized within paintings, engravings, sculptures, theater, dancing, language, and other forms of artistic or cultural expression (Cohen 2005, Fernandez-Gimenez 2015, Hunter 2017).

Learning from nature is declining due to both overall loss of species richness, evidenced by loss of ethnoecological knowledge of nature, and changes in lifestyles (Aswani et al. 2018). Urbanization decreases proximity with nature and tends to change the forms of relationships between people and nature. More than 50% of the global population now lives in urban areas, far from relatively natural areas or biodiversity rich landscapes. Lack of proximity to nature decreases knowledge, especially ILK critical to identification of natural medicinal products. Learning processes are likely to decrease with a global decrease in ILK (Aswani et al. 2018), and global capacity to learn from ILK is therefore likely to decrease. Declines in nature-based learning may be particularly acute in agrodiversity and medicine, where traditional selection of crops and identification of natural medicines have derived initially from ILK. Learning about food-related genetic resources, of which the vast majority are found in traditional agroecosystems such as shifting cultivation, is declining as industrial monocultural plantations increase (Heinimann et al. 2017). There is a significant loss of representation of nature in art and an increase in fragmented use of nature in science that is often disconnected from natural processes. Declines in nature-based learning are not universal, however; some sub-populations increase learning by travelling to natural areas for recreation (Wolff et al. 2017) and by accessing nature through books, television, and the Internet. The digital age is likely to facilitate new connections between nature and culture (Liang 2009, Callenglish, 2018).

Humankind learns from nature, experiments and learns from natural processes, and uses ecological traits to select crops, medicines for healing, and produce materials. Learning to modify nature for the benefit of humankind is one of the major principles of learning. This type of learning is the basis of humankind's capacity to transform natural processes and thereby replace many of the benefits of nature, such as the development of chemicals to replace soil fertility. This kind of transformative learning also allows people to change the composition of nature through genetic modification. As a result, science is increasingly using information from nature and then mimicking nature, for example using abstract equations or fractals to access elements of nature or using nanotechnologies to develop biomimicry (Hunter 2017), leading to a slight decrease in the use of nature and natural processes by science. Learning to transform nature has had both positive and negative impacts on quality of life. Genetically modified organisms, for example, have immediate positive impacts on the production of food and raw materials, but issues are arising about potential negative impacts on the environment (Pott et al. 2018). Similarly, the use of gene drive techniques on mosquitoes, although not yet released in situ, are expected to have major benefits for human health (Hammond et al. 2017), but such approaches are under debate due to ethical and environmental concerns.

Box 2.3.3 Learning and Experiences: Why proximity to nature matters to our children

Nature matters to children. Natural environments provide developmental benefits for children and promote creativity, exploration, divergent thinking that can aid recovery from stress (Wells and Evans 2003 cited by Sargisson et al. 2012), and cognitive restoration. Children report a desire for more trees and green spaces in their schools (Sargisson et al. 2012). Throughout the world and in all societies, children are known to observe nature differently than adults (Dounias and Aumeeruddy-Thomas 2017), to access spaces in nature that adults do not use, such as climbing on trees, and to do this even in landscapes where very little nature remains. Children establish analogies between human worlds and non-human worlds by creating special linkages with nature through their imagination (Simenel et al. 2017). Children's access to nature can follow very different rules in different societies; this was observed in Indonesian agroforestry systems where private agroforests can only be accessed by their owners yet children from all village families are allowed to transgress such rules, given them special access to wild fruits of different kinds never eaten by adults (Aumeeruddy 1994). Children give particular attention to some taxa for which adults do not care. As shown by Simenel et al. (2017):

"Playing with insects is probably a constant and almost universal element in the history of human childhoods. The universal character of the recreational appeal of insects for children lies in two of their characteristics: first, the diversity of their forms and behaviors, however bizarre they may at first appear to young humans, never fail to stimulate their imaginations, and second, their small size is the basis on which many cultures draw analogies to the small size of children. Costa Neto (2003) notes in his work in Brazil that most children in rural areas play with insects. Similarly, whilst it is adults who indulge in cricket fighting activities in Indonesia, it is highly likely that children are involved in finding and collecting the

crickets (Pemberton 2003). These few observations raise important questions regarding the autonomous learning processes resulting from encounters between children and insects and the way in which these processes are incorporated into the acquisition of skills linked to adult activities."

In Southern Morocco, Simenel et al. 2017 show that beekeeping is a very important activity but that children are not allowed to manipulate beehives until they are late adolescents and must follow and observe the activities of their fathers. Due to these restrictions, children have developed a whole set of activities with solitary bees (a variety of species of the Megachilidae family) with whom they play, who they consider as their friends, and whose stores of pollen they collect and eat or sell to other children. These small solitary bees nurtures their fondness for beekeeping, a risky activity that they cannot yet afford to practice and can only observe through accompanying adult beekeepers. This example demonstrates that learning about the role of pollinators can start very early in childhood and that children are probably a key subset of all user groups at global level and in many biomes that develop their interest in nurturing and protecting plant-insects-human relationships.

NCP 16: Physical and Psychological Experiences

There are long held beliefs that human health and well-being are influenced positively by spending time in natural settings, and beneficial properties are attributed to activities in nature (Stigsdotter, et. al 2011, Bishop et al. 2013). Exposure in to nature in urban settings and is also thought to improve mental health, though reviews of scientific findings have been inconclusive about the extent of this effect and the elements of nature which might provide it (Lee and Maheswaran, 2010, Gascon, et al. 2015). Reflecting a growing recognition of the value of nature and cultural resources, the number and extent of protected areas established globally has increased. Over 30 million square kilometers have been protected in the last 50 years and the number of protected areas designated and/or recognized by countries has doubled every decade for the last 20 years (2014 UN List). Visitation to these protected areas has also increased. The world's terrestrial protected areas receive roughly 8 billion visits each year, more than 80% by European and North American visitors (Balmford et al. 2015). These visits are estimated to generate approximately US \$600 billion per year in direct in-country expenditure (Balmford et al. 2015). Experience of nature has also been modified and popularized through the spa industry, mineral and natural springs, man-made gardens and forests, and many others (Erfurt-Cooper, 2010, Erfurt-Cooper and Cooper, 2009, Li, 2018). This is one way of servicing the needs of the growing appetite for the experience of nature among affluent urban dwellers in the years to come. The establishment of protected areas, national parks, and tourist amenities such as spas are not always beneficial for traditional peoples whose lives are intertwined with nature (Laltaika and Askew, 2018). Protected areas and national parks can impoverish people and ultimately dispossess them from their homes and ultimately lead to the loss of ILK.

NCP 17: Supporting Identities

Nature provides culture with the possibility to attribute value to it, and culture attributes value to nature. The abundance of natural ecosystems, especially those with continued existence over longer periods of time, could be seen as a prerequisite for supporting identities. However, without culture this remains a potential only. Non-material and spiritual values are part of people's cultures and play a crucial role in shaping their perception of nature (Verschuuren, 2010). In many cases identity is inseparably linked to a particular place or resource (such as Indigenous Peoples of the North and of the Pacific Islands). In these places, local economies depend strongly on the availability of natural resources, but also on cultural knowledge, traditionally transmitted from generation to generation, regarding the ways of preparation, storage, and distribution of food and resources (Pascua et al. 2017, Kaltenborn 1998 etc). With increased globalization, urbanization, and environmental degradation these identities are at risk. Loss of identity has a direct impact on quality of life and human well-being and could result in health problems such as depression, alcoholism, suicide, and violence (Kirmayer et al., 2011) and loss of security (Pascua et al., 2017, IPBES 2018b). At the same time, there seems to be an increasing awareness about cultural values, traditions, and environmental conservation, especially by urbanized and wealthy people who have otherwise become more distant from nature. High identity value results in better social cohesion, stronger sense of place, spiritual and cultural well-being, and thereby better care for the environment. Spiritual and religious values can be instrumental in promoting biodiversity conservation (Daniel et al., 2012, Morcillo Hernandez et al. 2013, Chan et al 2016), although there remains some risk for underestimating the complexities of lived experiences of spirituality and religiosity. Attempts have been made to use sacred areas as a point of departure when creating protected areas. There are important signs that youth, at least in the US, but also elsewhere, are rediscovering nature's contribution to identity (Wood et al 2010). Similarly, nature has become engrained in the cultural identity of some countries such as Bhutan (Zurick, 2006) and Costa Rica (Anglin, 2015), where NCP have been integrated into livelihoods and national economies.

NCP 18: Maintenance of Options

Preserving biodiversity is valuable in part because it maintains future options and potential for new discoveries. The loss of biodiversity reduces our options. Ehrlich (1992) compares biodiversity to a vast genetic library that has provided the very basis of our civilization—our crops, domestic animals and many of our medicines and industrial products but that "Innumerable potential new foods, drugs and useful products may yet be discovered—if we do not burn down the library first". (p.12). Preserving biodiversity preserves information embedded in genes and species. Information can provide global benefits because the results of new discoveries can be applied anywhere. We are losing many populations and species (see Chapter 2.2) in taxonomic groups that have known value (Ceballos et al. 2017) as well as those that have no know current value but may become important in the future. Measures of phylogenetic diversity, which give added weight to species with more unique genetic lineages, are also in decline (Faith 2018). Population extinctions and range contractions (an indicator of NCP18) are most severe in western North America, central Europe, India and Southeast Asia, south and central Australia, western and southern South America, and northern and southern Africa (Ceballos et al. 2017).

2.3.5.4 Information gaps

Since the Millennium Ecosystem Assessment was published in 2005, a large amount of data have been collected on biodiversity, ecosystems, ecosystem services and more generally on the coproduction and impact of social, environmental, and climate change upon them. Despite this progress, however, large information gaps remain in assessing the status and trends of NCP, and particularly their implications to the quality of life of different groups of people. Below are some of the major information gaps that should to be addressed going forward to improve future global assessments of NCP.

- 1. The extent of nature's contribution to good quality of life is not well understood for some NCP. The lack of understanding arises for several reasons. First, it is often hard to disentangle nature's contributions from other contributions. For example, though we have good data on status and trends of air quality across major cities in the world (WHO 2016c), how changes in vegetation impact air quality in cities is less well understood and is currently a frontier of scientific investigation (Janhäll 2015, Irga et al. 2015). Second, understanding of key links between nature and impacts on good quality of life may be missing. For example, though we often have a good understanding of how changes in exposure affect disease incidence and impacts on human health, how changes in nature influence exposure is often complex and is poorly understood for some diseases (Bayles et al. 2016). Exposure for vector-borne diseases depends on populations of vectors as well as how these vectors overlap with vulnerable populations of humans. Vector populations can depend on complex ecosystem interactions that give rise to unpredictable increases or decreases in populations as a function of anthropogenic induced changes to ecosystems. Exposure also depends on human behavior and public health measures designed to reduce the vulnerability of human populations to disease.
- 2. Even where the extent of nature's contribution to good quality of life is well understood, there is often a lack of systematic data collection, or systematic documentation, on which to base a comprehensive global assessment. Much of the literature on non-material NCP involves detailed case studies of specific groups. This literature provides a wealth of information but studies typically differ in focus and methodology, and there is uneven coverage across regions, which makes it difficult to combine results into a systematic global assessment (Hernández-Morcillo et al. 2013). For most NCP we lack systematic reporting on impacts of nature on good quality of life. Much of the natural science literature focuses on changes in ecosystems and biodiversity but does not report how these changes affects good quality of life (such as income, livelihoods, health, and education) does not disentangle the impacts of nature on good quality of life from other impacts. It would be ideal to report quantitative measures of NCP in terms readily understood by various decision-makers and the general

public. While we have some measures of NCP reported in monetary terms, health terms, or other measures related to good quality of life, we lack systematic indicators that can be reported in a variety of easily understood metrics for many NCP.

- 3. A general issue in doing a comprehensive global assessment is the existing fragmented state of knowledge with lack of integration between social and natural sciences, and between western science and ILK. This assessment has emphasized the importance of including multiple viewpoints and sources of knowledge but this has not been matched with an ability to effectively integrate multiple sources of knowledge into a systematic assessment. Different world views are hard to integrate in substantive ways. Doing so will require increased dialog across communities and agreement on how to be more systematic in knowledge generation and data collection.
- 4. The distribution across user groups of impacts of NCP on good quality of life are poorly documented. The original intent of this assessment was to report on impacts on good quality of life by major user groups by region. A typology of user groups was developed for this assessment, which involved differentiation based on livelihoods (subsistence gatherers, subsistence and commercial farmers, subsistence and commercial fishers, pastoralists, commercial ranchers, commercial foresters, mining and energy production, commercial and manufacturing), as well as residence location (rural, semi-urban, urban, coastal, inland, forest, grassland, desert, etc.). However, there has not been enough systematic study of impacts of NCP on good quality of life by user groups to date to allow such reporting. Many existing studies of NCP report on overall changes and do not break down impacts by user groups. In addition, though there is a rich literature on studies of particular groups and in particular places by anthropologists and other social scientists, as well as written material documenting ILK, but this information has not been systematically reported in a common framework that would allow for a comprehensive global assessment. Improvements in the ability to report on impacts by user groups would greatly improve the usefulness of future assessments.
- 5. Measuring trends in NCP requires having a time series of data measured in a consistent fashion. Consistent time series data exists for some aspects of some NCP but is lacking for many aspects of most NCP. For some environmental measures it is now possible to get consistent global data via remote sensing. However, many remote sensing data series begin with the satellite era, so that many of these time series are of fairly short duration. In contrast, measures of impact on good quality of life often require direct observation or survey work. Time series data exists for income, health and other measures of human well-being but typically does not report on the impact that nature has on good quality of life.

2.3.6 Integrative summary and conclusions

Nature provides not only the basic elements needed for human survival, but also contributes material and non-material benefits that improve human well-being. Nature's contributions to people (NCP) include i) regulation processes that control the production of important elements for human well-being such as fresh air, potable water, shelter, and control of pests, ii) material goods such as the provisioning of food and energy resources, medicines, and construction

materials, and iii) non-material value such as opportunities for learning, having experiences, and instilling a sense of identity. All these contributions rely to some extent on the biophysical properties of nature (e.g. ecosystems, populations, species) but also on human-nature interactions, which together define the co-production and outputs of NCP (Figures 2.3.1, 2.3.2). For an NCP to positively impact quality of life it must be available, accessible, and valued.

The output of co-production for most of the regulating and non-material NCPs have decreased since 1970. Only NCPs that are related to the co-production of marketable goods show consistent increasing trends (i.e. materials, food and feed, and energy) (Figure 2.3.3). Nevertheless, although the outputs of co-production have increased for most material NCP, the long-term ability of nature to continue producing these NCP has declined. For example, production of farmed fish has increased over the past 10 years, offsetting declines of about 10% in wild catch that reflect an estimated decrease of 6-30% in catch potential resulting from over-harvesting fish stocks. Potential NCP for ocean acidification regulation has remained stable or may have increased over the last few decades, as there was an increase in global marine primary production linked to multi-decadal variability in ocean climate (Chavez et al. 2011), while 14 of 18 potential NCP have declined and others show contrasting trends across different proxies.

There is increasing recognition and awareness of the importance of NCP for a good quality of life. Declines in NCP have led to purposeful actions to try to arrest the decline, such as increasing amounts of protected areas, and efforts to maintain mangroves and coastal wetlands to provide protection against storm surge for coastal settlements and initiatives to protect 'blue carbon' stores in coastal ecosystems (Kennedy et al. 2010). Nevertheless, overall trends continue downward for many NCP despite these actions, as they are outweighed by continued negative actions arising from population pressures, market forces, or system inertia.

In many circumstances there are trade-offs among NCP. For example, although an increment of cultivated areas has been shown to increase the provisioning of food and other materials important for people (e.g. natural fibers, ornamental flowers), it is also likely to reduce contributions of nature such as pollination by wild insects, pest control, and regulation of water quality. Agroecological means of producing food may reduce these tradeoffs.

Tropical and subtropical regions seem to be suffering the most pronounced changes, as shown by the high number of NCP showing negative trends there. Deforestation, land conversion, and defaunation are the main factors behind the observed patterns. Differences in how trends in NCP affect quality of life across user groups are substantial, however, scarcity of data to date prevents a systematic review. These differences in impact arise because i) NCP accessibility and associated value are context dependent and vary with cultural preferences, knowledge, socio-economic status, and geographical location as well as other drivers. Integration among natural and social science is needed to better assess the impact of NCP on quality of life. Also, further

Unedited draft chapter 31 May 2019

steps should be directed at reducing uncertainty of trends for both co-production and potential NCP. Taking into account likely tradeoffs, it is critical to understand, integrate, and synthesize information across all NCP.

References

- Abubakar, I. I., Tillmann, T., & Banerjee, A. (2015). Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 385(9963), 117-171.
- Adams, C., & Gutierrez, B. (2018). The Microbiome has Multiple Influences on Human Health. Research and Reviews: Journal of Microbiology and Biotechnology, 7.
- Adams, C., Chamlian Munari, L., Van Vliet, N., Sereni Murrieta, R.S., Piperata, B.A., Futemma, C., Novaes Pedroso, N., Santos Taqueda, C., Abrahão Crevelaro, M., Spressola-Prado, V.L., 2013. Diversifying Incomes and Losing Landscape Complexity in Quilombola Shifting Cultivation Communities of the Atlantic Rainforest (Brazil). Hum. Ecol. 41, 119-137. https://doi.org/10.1007/s10745-012-9529-9.
- Adekola, O., et al. (2015). "Inequality and ecosystem services: The value and social distribution of Niger Delta wetland services." Ecosystem Services 12: 42-54.
- Adger, W., T. Hughes, C. Folke, et al. 2005. Social-ecological resilience to coastal disasters. Science. 309: 1036-9.
- Aerts, R., Honnay, O., & Van Nieuwenhuyse, A. (2018). Biodiversity and human health: mechanisms and evidence of the positive health effects of diversity in nature and green spaces. British medical bulletin, 127(1), 5-22.
- Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann. Bot. 103, 1579–1588 (2009).
- Aizen, M.A. and Harder, L.D. (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918
- Albrecht, Matthias, Bernhard Schmid, Yann Hautier, Christine B. Mueller, and Christine B
 Müller. 2012. 'Diverse Pollinator Communities Enhance Plant Reproductive Success'.
 Proceedings of the Royal Society B: Biological Sciences 279 (1748): 4845–52.
- Alcorn, J. B. (1996). "Forest use and ownership: Patterns, issues, and recommendations." Forest Patches in Tropical Landscapes, Island, Washington, DC: 233-257.
- Aldy, J., and K. Viscusi. 2003. The Value of a Statistical Life: A Critical Review of Market Estimates Throughout the World. Journal of Risk and Uncertainty 27(1): 5 76.
- Alexandratos, N., and J. Bruinsma. 2012. "World agriculture towards 2030/2050: the 2012 revision." In. Rome: FAO.
- Allan, J. A. (2003). "Virtual Water the Water, Food, and Trade Nexus. Useful Concept or Misleading Metaphor?" Water International 28(1): 106-113.

- Altieri, M. A. and C. I. Nicholls (2012). Agroecology Scaling Up for Food Sovereignty and Resiliency. Sustainable Agriculture Reviews: Volume 11. E. Lichtfouse. Dordrecht, Springer Netherlands: 1-29.
- Altieri, M. A., et al. (2015). "Agroecology and the design of climate change-resilient farming systems." Agronomy for Sustainable Development 35(3): 869-890.
- Alves et al. (2018) From Marine Origin to Therapeutics: The Antitumor Potential of Marine Algae-Derived Compounds, Frontiers in Pharmacology.
- Angelsen, A., et al. (2014). "Environmental Income and Rural Livelihoods: A Global-Comparative Analysis." World Development 64: S12-S28.
- Anglin, A. E. (2015). "Voices from Costa Rica: exploring youth perceptions of tourism and the influence of tourism on identity formation and cultural change." Journal of Tourism and Cultural Change 13(3): 191-207.
- Anthoff, M.J., C. Hepburn, and R.SJ. Tol. 2009. Equity weighting and the marginal damage costs of climate change. Ecological Economics 68: 836-849.(2009)
- Antrop, M., Why landscapes of the past are important for the future. Landscape and Urban Planning, 2005. 70(1): p. 21-34.
- Anyamba, A., J.-P. Chretien, J. Small, C.J. Tucker, P.B. Formenty, J.H. Richardson, S.C. Britch, D.C. Schnabel, R.L. Erickson, and K.J. Linthicum. 2009. Prediction of a Rift Valley fever outbreak. Proceedings of the National Academy of Sciences, USA 106 (3): 955-959. https://doi.org/10.1073/pnas.0806490106
- Arkema, K. K., et al. (2017). "Linking social, ecological, and physical science to advance natural and nature-based protection for coastal communities." Annals of the New York Academy of Sciences.
- Arunotai, N. "Saved by an old legend and a keen observation: The case of Moken sea nomads in Thailand." Indigenous Knowledge for Disaster Risk Reduction 73.
- Ashendorff, A., M.A. Principe, A. Seely, J. LaDuca, L. Beckhardt, W. Faber, and J. Mantus. 1997. Watershed protection for New York City's supply. Journal of American Water Works Association 89 (3): 75-88.
- Aslan, C.E., Zavaleta, E.S., Tershy, B. & Croll, D. (2013) Mutualism disruption threatens global plant biodiversity: a systematic review (ed D Nogues-Bravo). PLoS ONE, 8, e66993.
- Aswani, S., Lemahieu, A., & Sauer, W. H. H. (2018). Global trends of local ecological knowledge and future implications. Plos One, 13(4), e0195440. https://doi.org/10.1371/journal.pone.0195440
- Aumeeruddy-Thomas Y., M. Moukhli, H. Haouane, B. Khadari (2017) Ongoing domestication and diversification in grafted olive-oleaster agroecosystems in Northern Morocco. Regional Environmental Change 17:1315-1328 DOI 10.1007/s10113-017-1143-3
- Aumeeruddy, Y. (1994). Local representations and management of agroforests on the periphery of Kerinci Seblat National Park Sumatra, Indonesia, UNESCO.
- Azar, C. and T. Sterner. 1996. Discounting and distributional considerations in the context of global warming. Ecological Economics 19(2): 169-184.

- Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920.
- Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., et al. (2015).Dynamics and stabilization of the human gut microbiome during the first year of life.Cell host & microbe, 17(5), 690-703.
- Bagstad, K. J., F. Villa, D. Batker, J. Harrison-Cox, B. Voigt, and G. W. Johnson. 2014. From theoretical to actual ecosystem services: mapping beneficiaries and spatial flows in ecosystem service assessments. Ecology and Society 19(2): 64.
- Bakker M. M., Govers G., Jones R. A. and Rounsevell M. D. A. (2007) "The Effect of Soil Erosion on Europe's Crop Yields", Ecosystems 10:1209–1219
- Balmford, A., et al. (2009). "A Global Perspective on Trends in Nature-Based Tourism." PLOS Biology 7(6): e1000144.
- Balmford, A., et al. (2015). "Walk on the Wild Side: Estimating the Global Magnitude of Visits to Protected Areas." PLOS Biology 13(2): e1002074.
- Balmford, A., Green, J. M. H., Anderson, M., Beresford, J., Huang, C., Naidoo, R., ... Manica,
 A. (2015). Walk on the Wild Side: Estimating the Global Magnitude of Visits to Protected
 Areas. PLoS Biology, 13(2), 1–6. https://doi.org/10.1371/journal.pbio.1002074
- Bambridge, Tamatoa. 2016. The law of rahui in the Society Islands. In The rahui: Legal pluralism in Polynesian traditional management of resources and territories. Ed. Tamatoa Bambridge. ANU Press.
- Barnes, M. et al. Characterizing nature and participant experience in studies of nature exposure for mental health, an integrative review. Front. Psychol. In review.
- Barthel, F. and E. Neumayer. 2012. A trend analysis of normalized insured damage from natural disasters. Climatic Change 113(2): 215–237.
- Bartomeus, I., Ascher, J. S., Gibbs, J., Danforth, B. N., Wagner, D. L., Hedtke, S. M., & Winfree, R. (2013). Historical changes in northeastern US bee pollinators related to shared ecological traits. Proceedings of the National Academy of Sciences, 110(12), 4656-4660.
- Bateman, I.J., A.R. Harwood, G.M. Mace, R.T. Watson, D.J. Abson, B. Andrews, A. Binner, A. Crowe, B.H. Day, and S. Dugdale. 2013. Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science 341: 45-50.
- Battesti V. (2005). Jardins au désert, Évolution des pratiques et savoirs oasiens. Jérid tunisien. Éditions IRD, À travers champs, Paris. 440 p. http://hal.archivesouvertes.fr.inee.bib.cnrs.fr/halshs-00004609
- Bayles, B. R., et al. (2016). "Ecosystem Services Connect Environmental Change to Human Health Outcomes." EcoHealth 13(3): 443449.
- Bebber, D.P, M. Ramotowski, and S.J. Gurr. 2013. 'Crop pests and pathogens move polewards in a warming world', Nature Climate Change, 3: 985.
- Beck, H. E., et al. (2013). "Global patterns in base flow index and recession based on streamflow observations from 3394 catchments." Water Resources Research 49(12): 7843-7863.

- Becker, J., et al. (2008). "Use of traditional knowledge in emergency management for tsunami hazard: A case study from Washington State, USA." Disaster Prevention and Management: An International Journal 17(4): 488-502.
- Behrenfeld et al. 2006, Climate-driven trends in contemporary ocean productivity, Nature 444, 752-755.
- Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121-141.
- Bello, M. G. D., Knight, R., Gilbert, J. A., & Blaser, M. J. (2018). Preserving microbial diversity. Science, 362(6410), 33-34.
- Bellon, M. R., & Burdon, J. J. (2017). In situ conservation harnessing natural and humanderived evolutionary forces to ensure future crop adaptation, (July), 965–977. https://doi.org/10.1111/eva.12521
- Bellon, M. R., Gotor, E., and Caracciolo, F., 2015, Conserving landraces and improving livelihoods: how to assess the success of on-farm conservation projects? International Journal of Agricultural Sustainability, v. 13, no. 2, p. 167-182.
- Bennett, E. M., G. D. Peterson, and L. J. Gordon. (2009). Understanding relationships among multiple ecosystem services. Ecology Letters 12:1394-1404.
- Berkes, F. (2009). Evolution of co-management : Role of knowledge generation , bridging organizations and social learning. Journal of Environmental Management 90(5): 1692–1702. https://doi.org/10.1016/j.jenvman.2008.12.001
- Berkes, F. 2012. Sacred Ecology: Traditional Ecological Knowledge and Resource Management 3rd ed. New York: Routledge.
- Berkes, F. and M. K. Berkes (2009). "Ecological complexity, fuzzy logic, and holism in indigenous knowledge." Futures 41(1): 6-12.
- Berkes, F., C. Folke, and J. Colding. 1998. Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience. Cambridge University Press.
- Berland, A. et al. The role of trees in urban stormwater management. Landsc. Urban Plan. 162, 167–177 (2017).
- Bernhardt, E. S. (2013). "Cleaner Lakes Are Dirtier Lakes." Science 342(6155): 205.
- Biesmeijer, J. C., Roberts, S. P., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., ... & Settele, J. (2006). Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 313(5785), 351-354.
- Bishop P. (2013)Nature for Mental Health and Social Inclusion Disability Studies Quarterly., (33). 1
- Bjorklund, G., Saad, K., Chirumbolo, S., Kern, J. K., Geier, D. A., Geier, M. R., & Urbina, M. A. (2016). Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiol Exp (Wars), 76(4), 257-268.
- Blanco-Canqui H and Lal R. (2010) Soil Erosion and Food Security. In: Principles of Soil Conservation and Management. Springer, Dordrecht

- Bockstael, N.E., A.M. Freeman III, R.J. Kopp, P.R. Portney, and V.K, Smith. (2000) On measuring economic values for nature. Environmental Science and Technology 34: 1384-1389.Bodeker, G., Ong, C.-K., Grundy, C., Burford, G., Shein, K (2005). WHO Global atlas of traditional, complementary and alternative medicine. Geneva : World Health Organization. Retrieved from http://www.who.int/iris/handle/10665/43108%5Cnhttp://apps.who.int/iris/handle/10665/4
- 3108%5Cnhttp://www.who.int/iris/bitstream/10665/43108/1/9241562862_map.pdf Boerner, B. P., & Sarvetnick, N. E. (2011). Type 1 diabetes: role of intestinal microbiome in humans and mice. Annals of the New York Academy of Sciences, 1243(1), 103-118.
- Boulangé, C. L., Neves, A. L., Chilloux, J., Nicholson, J. K., & Dumas, M. E. (2016). Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome medicine, 8(1), 42.
- Bouwman, A. F., G. Van Drecht, J. M. Knoop, A. H. W. Beusen and C. R. Meinardi (2005)."Exploring changes in river nitrogen export to the world's oceans." Global Biogeochemical Cycles 19(1)
- Bowler, D. E., et al. (2010). "A systematic review of evidence for the added benefits to health of exposure to natural environments." BMC Public Health 10(1): 456.
- Bradstock, R. A., et al. (2012). Flammable Australia: fire regimes, biodiversity and ecosystems in a changing world, CSIRO publishing.
- Brander, L. M., et al. (2012). "THE ECONOMIC IMPACT OF OCEAN ACIDIFICATION ON CORAL REEFS." Climate Change Economics 03(01): 1250002.
- Bratman, G.N., Daily, G.C., Levy, B.J. and Gross, J.J., 2015. The benefits of nature experience: Improved affect and cognition. Landscape and Urban Planning, 138, pp.41-50.
- Bratman, G.N., J.P. Hamilton, G.C Daily. 2012. The impacts of nature experience on human cognitive function and mental health. The Year in Ecology and Conservation Biology 1249(1): 118-136.
- Brauman, K. A. (2015). "Hydrologic ecosystem services: linking ecohydrologic processes to human well-being in water research and watershed management." Wiley Interdisciplinary Reviews: Water 2(4): 345-358.
- Brauman, K. A., B. D. Richter, S. Postel, M. Malsy and M. Flörke (2016). "Water depletion: An improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments." Elementa 4.
- Brauman, K. A., G. C. Daily, T. K. Duarte and H. A. Mooney (2007). The nature and value of ecosystem services: An overview highlighting hydrologic services. Annual Review of Environment and Resources. 32: 67-98.
- Brodie, J. F., et al. (2014). "Secondary extinctions of biodiversity." Trends in Ecology & Evolution 29(12): 664-672.
- Brondizio, E. S. 2008/2017. The Amazonian Caboclo and the Açaí palm: Forest Farmers in the Global Market." New York: New York Botanical Garden Press. Pp. 402.

- Butchart, S.H., Walpole, M., Collen, B., Van Strien, A., Scharlemann, J.P., Almond, R.E., Baillie, J.E., Bomhard, B., Brown, C., Bruno, J. and Carpenter, K.E., 2010. Global biodiversity: indicators of recent declines. Science, p.1187512.
- Cadag, J. R. D. and J. C. Gaillard (2012). "Integrating knowledge and actions in disaster risk reduction: the contribution of participatory mapping." Area 44(1): 100-109.
- Caillon, S., Cullman, G., Verschuuren, B., & Sterling, E. J. (2017). Moving beyond the human nature dichotomy through biocultural approaches : including ecological well-being in resilience indicators, 22(November).
- Caillon, S., Lescure, J., & Lebot, V. (2006). Nature of taro (Colocasia esculenta (L.) Schott) genetic diversity prevalent in a Pacific Ocean island, Vanua Lava, Vanuatu, 1273–1289. https://doi.org/10.1007/s10722-005-3877-x
- Callenglish. (2018, forthcoming). Cultural industries of the Global South in the digital age Diversity of actors and local reconfigurations. Cahiers d'Outre Mer, 1–5.
- Cameron, S. A., Lozier, J. D., Strange, J. P., Koch, J. B., Cordes, N., Solter, L. F., & Griswold, T. L. (2011). Patterns of widespread decline in North American bumble bees. Proceedings of the National Academy of Sciences, 108(2), 662-667.
- Candela M, et al. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int J Food Microbiol. 2008;125:286–292.
- Cariñanos, P. and M. Casares-Porcel (2011). "Urban green zones and related pollen allergy: A review. Some guidelines for designing spaces with low allergy impact." Landscape and Urban Planning 101(3): 205-214.
- Carson, R.T. 2011. Contingent Valuation: A Comprehensive Bibliography and History Northampton, MA: Edward Elgar.
- Carvalheiro, L. G., Kunin, W. E., Keil, P., Aguirre-Gutiérrez, J., Ellis, W. N., Fox, R., ... & Meutter, F. (2013). Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants. Ecology Letters, 16(7), 870-878.
- Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 2006;313(5790):1126–30.
- Ceballos, G., P.R. Ehrlich, and R. Dirzo. (2017). Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences 114 (30): E6089-E6096.
- Champ, P., K. J. Boyle and T.C. Brown (eds.). 2009. A Primer on Nonmarket Valuation (2nd edition). Boston: Kluwer.
- Chan, K.M.A., P. Balvanera, K. Benessaiah, M. Chapman, S. Díaz, E. Gómez-Baggethun, R. Gould, N. Hannah, K. Jaxi, S. Klain, G.W. Luck, B. Martín-López, B. Muraca, B. Norton, K. Ott, U. Pascual, T. Satterfield, M. Tadaki, J. Taggart, and N. Turner. (2016) Why protect nature? Rethinking values and the environment. Proceedings of the National Academy of Sciences 113: 1462-1465.

- Chan, KMA, T Satterfield, J Goldstein. (2012) Rethinking ecosystem services to better address and navigate cultural values. Ecological Economics. 74:8-18
- Chang'a, L. B., et al. (2010). "Indigenous knowledge in seasonal rainfall prediction in Tanzania: A case of the South-western Highland of Tanzania." Journal of Geography and Regional planning 3(4): 66-72.
- Chaplin-Kramer, R. et al. (2014) Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc. R. Soc. B Biol. Sci. 281, 20141799
- Chaplin-Kramer, R., I. Ramler, R. Sharp, N. M. Haddad, J. S. Gerber, P. C. West, L. Mandle, P. Engstrom, A. Baccini, S. Sim, C. Mueller and H. King (2015). Degradation in carbon stocks near tropical forest edges. Nature Communications 6: 10158.
- Chavez, F.P., Messié, M. and Pennington, J.T., 2010. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 2011. 3:227–60
- Chen, J., Chia, N., Kalari, K. R., Yao, J. Z., Novotna, M., Soldan, M. M. P., et al. (2016). Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Scientific reports, 6, 28484.
- Cheung WW, Lam VW, Sarmiento JL, Kearney K, Watson RE, Zeller D, Pauly D. (2010) Largescale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology. 16(1):24-35.
- Cheung, W. W., Jones, M. C., Reygondeau, G., Stock, C. A., Lam, V. W., & Frölicher, T. L. (2016). Structural uncertainty in projecting global fisheries catches under climate change. Ecological Modelling, 325, 57-66.
- Cheung, W. W., Sarmiento, J. L., Dunne, J., Frölicher, T. L., Lam, V. W., Palomares, M. D., ... & Pauly, D. (2013). Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nature Climate Change, 3(3), 254-258FAO. 2016. The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Rome. 200 pp.
- Chi, X., Zhang, Z., Xu, X., Zhang, X., Zhao, Z., Liu, Y., ... Huang, L. (2017). Threatened medicinal plants in China: Distributions and conservation priorities. Biological Conservation, 210(June), 89–95. https://doi.org/10.1016/j.biocon.2017.04.015
- Chichilnisky, G. and G. Heal. 1998. Economic returns from the biosphere. Nature 391: 629-630.
- Claesson, Marcus J., Ian B. Jeffery, Susana Conde, Susan E. Power, Eibhlís M. O'connor, Siobhán Cusack, Hugh MB Harris et al. "Gut microbiota composition correlates with diet and health in the elderly." Nature 488, no. 7410 (2012): 178.
- Claus, S. P., Guillou, H., & Ellero-Simatos, S. (2016). The gut microbiota: a major player in the toxicity of environmental pollutants?. Npj biofilms and microbiomes, 2, 16003.
- Claval, P. (2005) 'Reading the rural landscape'. Landscape and Urban Planning 70: 9–19.
- Cohen M.I. Traditional and Popular Painting in Modern Java. In: Archipel, volume 69, 2005. Autour de la peinture à Java., Volume I. pp. 5-38

- Cohen, AJ. et al. 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet 389: 1907-1918.
- Cole, D. H. and E. Ostrom (2012), 'The Variety of Property Systems and Rights in Natural Resources', in D. H. Cole and E. Ostrom (eds.), Property in Land and Other Resources, Cambridge, MA: Lincoln Institute of Land Policy, pp. 37–64.
- Collaboration for Environmental Evidence (2013). Guidelines for Systematic Review and Evidence Synthesis in Environmental Management. Version 4.2, Environmental Evidence.
- Colwell R.R. (2002). Fulfilling the Promise of Biotechnology. Biotechnology Advances, (20), 215–228. https://doi.org/10.1016/S0734-9750(02)00011-3
- Commune, Nicolas (2017). The spiritual and religious dimensions of nature Evaluation of the literature and prospects for future research. Manuscript submitted as a contribution to the IPBES GA, 2017.05.08
- Conklin H. (1954) The relation of Hanunoo culture to the plant world, PhD Dissertation in Anthropology, Yale University, New Haven
- Conklin H.C. (1980) The ethnographic atlas of the Ifugao. A study of environent, culture and society in North Luzon, New Haven.
- Conte, Eric. (2016). Technical exploitation and 'ritual' management of resources in Napuka and Tepoto (Tuamotu Archipelago). In The rahui: Legal pluralism in Polynesian traditional management of resources and territories. Ed. Tamatoa Bambridge. ANU Press.

Convention on Biological Diversity (1992) United Nations

- Coomes, O. T., Mcguire, S. J., Garine, E., Caillon, S., Mckey, D., Demeulenaere, E., ... Wencélius, J. (2015). Farmer seed networks make a limited contribution to agriculture ? Four common misconceptions. Food Policy, 56, 41–50. https://doi.org/10.1016/j.foodpol.2015.07.008
- Cooper, N., Brady, E., Steen, H., Brice, R., 2016, Aesthetic and spiritual values of ecosystems: recognizing the ontological and axiological plurality of cultural ecosystem 'services', Ecosystems Services, 21: pp. 218–229.
- Corenblit, D., A. C. W. Baas, G. Bornette, J. Darrozes, S. Delmotte, R. A. Francis, A. M. Gurnell, F. Julien, R. J. Naiman and J. Steiger (2011). "Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings." Earth-Science Reviews 106(3): 307-331.
- Costa-Neto, E. M. (2003). Considerations on the man/insect relationship in the state of Bahia, Brazil. Les "insectes" dans la tradition orale. E. Motte-Florac and J. M. C. Thomas. Paris, Peeters: 95-104.
- Costanza, R., R. d'Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O'Neill, J. Pareulo, R. G. Raskin, P. Sutton and M. van den Belt. 1997. The value of the world's ecosystem services and natural capital. Nature 387: 253-260.

- Costello, C., S. Gaines and J. Lynham. 2008. Can catch shares prevent fisheries collapse? Science 321: 1678-1681.
- Cotton Australia (2016), Cotton Annual Report, Australian Cotton Industry Statistics, Cotton Australia, NSW, Australia.
- Couly, C. (2009). La biodiversité agricole et forestière des Ribeirinhos de la Forêt Nationale du Tapajós (Pará, Brésil): usages, gestion et savoirs, Museum national d'histoire naturelle-MNHN PARIS; Université de Brasilia.
- Cox, D. T. C., Hudson, H. L., Shanahan, D. F., Fuller, R. A., & Gaston, K. J. (2017). The rarity of direct experiences of nature in an urban population. Landscape and Urban Planning, 160, 79–84.
- Cox, L. M., & Blaser, M. J. (Antibiotics in early life and obesity. Nature Reviews Endocrinology, 11(3), 182.
- Cresti, M. and H. F. Linskens (2000). "Pollen-allergy as an ecological phenomenon: A review." Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 134(3): 341-352.
- Critchley, W. R. S., et al. (1994). "Indigenous soil and water conservation: A review of the state of knowledge and prospects for building on traditions." Land Degradation & Development 5(4): 293-314.
- Cronin, S. J., et al. (2004). "Participatory methods of incorporating scientific with traditional knowledge for volcanic hazard management on Ambae Island, Vanuatu." Bulletin of Volcanology 66(7): 652-668.
- Crossman, N.D., Burkhard, B., Nedkov, S., Willemen, L., Petz, K., Palomo, I. et al. 2013 A blueprint for mapping and modelling ecosystem services. Ecosystem Services, 4, 4-14.

Crutzen, P.J. 2002. Geology of mankind. Nature 415: 23-23.

- Cryan, J. F., & Dinan, T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature reviews neuroscience, 13(10), 701.
- Cuerrier, A. N.T. Gomes, T.C. et al. (2015) Cultural Keystone places : conservation and restauration in cultural landscapes 35 (3) 427-448
- Cunningham A.B. (1993a) Ethics, Biodiversity, and the New natural Products Development, WWF International. Published report.
- Cunningham, A.B. 1993b. African medicinal plants. Setting priorities at the interface between conservation and primary healthcare. Paris, UNESCO (People and Plant Working Paper 1).
- Daily, G. C., S. Polasky, J. Goldstein, P. M. Kareiva, H. A. Mooney, L. Pejchar, T. H. Ricketts, J. Salzman, and R. Shallenberger, 2009. Ecosystem services in decision making: time to deliver. Frontiers in Ecology and the Environment 7: pp.21-28.
- Daily, G.C. (Ed.). 1997. Nature's Services: Societal Dependence on Natural Ecosystems. Washington, DC: Island Press.
- Dale, V. H., et al. (2016). "Incorporating bioenergy into sustainable landscape designs." Renewable and Sustainable Energy Reviews 56: 1158-1171.

- Dalin, C., Konar M., Hanasaki N., Rinaldo A., Rodriguez-Iturbe I. (2012) Evolution of the global virtual water trade network Proceedings of the National Academy of Sciences 109 (16): 5989-5994.
- Daniel, T. C., Muhar, A.s, Arnberger, A., Aznar, O., Boyd, J. W., Chan, K. M.A., Costanza, R., Elmqvist, T., Courtney G., Gobster, P. H., Grêt-Regamey, A., Lave, R., Muhar, S., Penker, M., Ribe, R. G., Schauppenlehner, T., Sikor, T., Soloviy, I., Spierenburg, M., Taczanowska, K., Tam, J., von der Dunk, A., 2012. Contributions of cultural services to the ecosystem services agenda, Proc. Natl. Acad. Sci. 109 (23): 8812–8819.
- Daniel, T. C., Muhar, A.s, Arnberger, A., Aznar, O., Boyd, J. W., Chan, K. M.A., Costanza, R., Elmqvist, T., Courtney G., Gobster, P. H., Grêt-Regamey, A., Lave, R., Muhar, S., Penker, M., Ribe, R. G., Schauppenlehner, T., Sikor, T., Soloviy, I., Spierenburg, M., Taczanowska, K., Tam, J., von der Dunk, A., 2012. Contributions of cultural services to the ecosystem services agenda. Proceedings of the National Academy of Sciences 109 (23): 8812–8819.
- Davis, S.J. and Caldeira, K. (2010) Consumption-based accounting of CO2 emissions Proc. Natl. Acad. Sci., 107 (12) (2010), pp. 5687-5692
- Daw, T. I. M., et al. (2011). "Applying the ecosystem services concept to poverty alleviation: the need to disaggregate human well-being." Environmental Conservation 38(4): 370-379.
- De Filippo, Carlotta, Duccio Cavalieri, Monica Di Paola, Matteo Ramazzotti, Jean Baptiste Poullet, Sebastien Massart, Silvia Collini, Giuseppe Pieraccini, and Paolo Lionetti.
 "Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa." Proceedings of the National Academy of Sciences 107, no. 33 (2010): 14691-14696.
- de Groot, R. S., et al. (2010). "Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making." Ecological Complexity 7(3): 260-272.
- Deguignet M., Juffe-Bignoli D., Harrison J., MacSharry B., Burgess N., Kingston N., (2014) 2014 United Nations List of Protected Areas. UNEP-WCMC: Cambridge, UK. http://wedocs.unep.org/bitstream/handle/20.500.11822/9304/-2014%20United%20Nations%20List%20of%20Protected%20Areas-20142014 UN List of Protected Areas EN.PDF?sequence=3&isAllowed=y
- Descola, P. (2013). Beyond nature and culture. HAU: Jornal of Ethnographic Theory, 2(1), xxii, 463 pages. https://doi.org/10.14318/hau2.1.020
- Díaz, S., Demissew, S., Carabias, J., Joly, C., Lonsdale, M., Ash, N., Larigauderie, A., Adhikari, J. R., Arico, S., Báldi, A., Bartuska, A., Baste, I. A., Bilgin, A., Brondizio, E., Chan, K. M. A., Figueroa, V. E., Duraiappah, A., Fischer, M., Hill, R., Koetz, T., Leadley, P., Lyver, P., Mace, G. M., Martin-Lopez, B., Okumura, M., Pacheco, D., Pascual, U., Pérez, E. S., Reyers, B., Roth, E., Saito, O., Scholes, R. J., Sharma, N., Tallis, H., Thaman, R., Watson, R., Yahara, T., Hamid, Z. A., Akosim, C., Al-Hafedh, Y., Allahverdiyev, R., Amankwah, E., Asah, T. S., Asfaw, Z., Bartus, G., Brooks, A. L., Caillaux, J., Dalle, G.,

Darnaedi, D., Driver, A., Erpul, G., Escobar-Eyzaguirre, P., Failler, P., Fouda, A. M. M.,
Fu, B., Gundimeda, H., Hashimoto, S., Homer, F., Lavorel, S., Lichtenstein, G., Mala, W.
A., Mandivenyi, W., Matczak, P., Mbizvo, C., Mehrdadi, M., Metzger, J. P., Mikissa, J.
B., Moller, H., Mooney, H. A., Mumby, P., Nagendra, H., Nesshover, C., Oteng-Yeboah,
A. A., Pataki, G., Roué, M., Rubis, J., Schultz, M., Smith, P., Sumaila, R., Takeuchi, K.,
Thomas, S., Verma, M., Yeo-Chang, Y., & Zlatanova, D. (2015). The IPBES Conceptual
Framework - connecting nature and people. Current Opinion in Environmental
Sustainability, 14, 1–16. https://doi.org/10.1016/j.cosust.2014.11.002

- Díaz, S., U. Pascual, M. Stenseke, B. Martín-López, R.T. Watson, Z. Molnár, R. Hill, K.M.A. Chan, I.A. Baste, K.A. Brauman, S. Polasky, A. Church, M. Lonsdale, A. Larigauderie, P.W. Leadley, A.P.E. van Oudenhoven, F. van der Plaat, M. Schröter, S. Lavorel, Y. Aumeeruddy-Thomas, E. Bukvareva, K. Davies, S. Demissew, G. Erpul, P. Failler, C.A. Guerra, C.L. Hewitt, H. Keune, S. Lindley, Y. Shirayama. 2018. An inclusive approach to assess nature's contributions to people. Science 359: 270-272.
- Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N.D., Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R. and Hansen, M., 2017. An ecoregion-based approach to protecting half the terrestrial realm. BioScience, 67(6), pp.534-545.
- Ding H. Veit P.G. Blackman A. Gray E. Reytar K. K. Altamirano, Hogdon B. (2016) Foreword by Andrew Steer, President and CEO, World Resources Institute Climate benefits, tenure costs, the economic case for securing Indigenous land rights in the amazon. World Resource Institute WRI.ORG
- Dixon, Rod. (2016). I uta I tai a preliminary account on ra'ui in Mangaia, Cook Island. In The rahui: Legal pluralism in Polynesian traditional management of resources and territories. Ed. Tamatoa Bambridge. ANU Press.
- Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., & Knight, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences, 107(26), 11971-11975.
- Dounias E. 1993. Perception and use of wild yams by the Baka hunter-gatherers in south Cameroon rainforest. In Hladik C.M., Pagezy H., Linares O.F., Hladik A., Semple A., Hadley M. eds. Tropical forests, people and food. Biocultural interactions and applications to development. Paris : Unesco-Parthenon, Man and Biosphere serie, pp. 621-632.
- Dounias, E., & Aumeeruddy-Thomas, Y. (2017). Children'S Ethnobiological Knowledge: an Introduction. AnthropoChildren, (7URL: https://popups.uliege.be/2034-?--8517/index.php?id=2799 Special Issue 7
- Drupp, M. A. (2018). "Limits to Substitution Between Ecosystem Services and Manufactured Goods and Implications for Social Discounting." Environmental and Resource Economics 69(1): 135-158.

- Duarte, C. M. (2017). "Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget." Biogeosciences 14(2): 301-310.
- Dudley, N., et al. (2010). Conservation of biodiversity in sacred natural sites in Asia and Africa: A review of the scientific literature. Sacred natural sites: Conserving nature and culture. . London and Washington DC, Earthscan: 19-32.
- Dulloo, M. E., Hunter, D., and Leaman, D., 2014, Novel plant bioresources: applications in food, medicine and cosmetics in Gurib-Fakim, A., ed., Plant diversity in addressing food, nutrition and medicinal needs, Chichester, UK: Wiley., p. 1–21.
- Ehlers, S., & Kaufmann, S. H. (2010). Infection, inflammation, and chronic diseases: consequences of a modern lifestyle. Trends in immunology, 31(5), 184-190.
- Ehrlich, P. R. 1992. Environmental deterioration, biodiversity and the preservation of civilization. Environmentalist 12 (1): 9-14.
- Ekins, P., S. Sandrine, L. Deutsch, C. Folke, and R. de Groot. (2003). A framework for the practical application of the concepts of critical natural capital and strong sustainability. Ecological Economics 44: 165–185.
- Ellen (2002) The cognitive geometry of nature, a contextual approach in: Eds P. Descola & G. Palsson, Nature and Society. Anthropological perpectives, p103-123.
- Ellen R. & Fukui K. (1996). Redefining Nature: Ecology, Culture and Domestication. (E. R. & F. K., Ed.) (Berg Publi).
- Ellen Shepherd, E.J. Milner-Gulland, Andrew T. Knight, Matthew A. Ling, Sarah Darrah, Arnout van Soesbergen, & Neil D. Burgess. 2016. Status and Trends in Global Ecosystem Services and Natural Capital: Assessing Progress Toward Aichi Biodiversity Target 14. Conservation Letters, Journal for the Society of Conservation Biology. November/ December 2016, 9(6), 429–437. Wiley Periodicals, Inc.
- Ellis, E.C., 2018. Anthropocene: A Very Short Introduction. Oxford University Press.
- Elmqvist, T. et al. Urbanization, biodiversity and ecosystem services: Challenges and opportunities: A global assessment. (Springer International Publishing, 2013). doi:10.1007/978-94-007-7088-1
- Enioutina, E. Y., et al. (2017). "Herbal Medicines: challenges in the modern world. Part 5. status and current directions of complementary and alternative herbal medicine worldwide." Expert Review of Clinical Pharmacology 10(3): 327-338.
- Erb et al., 2017. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73.
- Erfurt-Cooper, P. (2010). The importance of natural geothermal resources in tourism. Proceedings World Geothermal Congress, Bali, Indonesia.
- Erfurt-Cooper, P. and M. Cooper (2009). Health and wellness tourism: Spas and hot springs, Channel View Publications.
- ESA CCI Land Cover project (2017). ESA Climate Change Initiative Land Cover led by UCLouvain.

- ESO (2017). Services Partnership. Ecosystem Services Database. http://espartnership.org/services/data-knowledge-sharing/ecosystem-service-valuation-database/ ESP (2017)
- Evrensel, A., & Ceylan, M. E. (The gut-brain axis: the missing link in depression. Clinical Psychopharmacology and Neuroscience, 13(3), 239.
- Ezzati, M., A. D. Lopez, A. Rodgers, S. Vander Hoorn and C. J. L. Murray (2002). "Selected major risk factors and global and regional burden of disease." The Lancet 360(9343): 1347-1360.
- Faith DP et al. 2018. Indicators for the Expected Loss of Phylogenetic Diversity. In: (R. Scherson and D.P. Faith eds.)
- Falk, A. and N. Szech (2013). "Morals and Markets." Science 340(6133): 707.
- Fallani, M., Young, D., Scott, J., Norin, E., Amarri, S., Adam, R., et al. (2010). Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. Journal of pediatric gastroenterology and nutrition, 51(1), 77-84.
- Fanzo J., Hunter, D., Borelli T., M. F. (2013). No Title Diversifying food and diets. Using agricultural biodiversity to improve nutrition and health. New York: Routledge. 368p
- FAO (2007). THE STATE OF THE WORLD'S ANIMAL GENETIC RESOURCES FOR FOOD AND AGRICULTURE. FAO, Rome (Vol. 9). https://doi.org/10.1111/j.1743-498X.2012.00579.x
- FAO (2014) Contribution of the forestry sector to national economies, 1990-2011, by A. Lebedys and Y. Li. Forest
- FAO (2014). State of the World's Forests: Enhancing the socioeconomic benefits from forests. Rome, Food and Agriculture Organization of the United Nations.
- FAO (2016b) The future of food and agriculture: Trends and challenge. UN Food and Agriculture Organization, Rome
- FAO (2016a) The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Rome. 200 pp.
- FAO (2017) The future of food and agriculture: Trends and challenge. UN Food and Agriculture Organization, Rome
- FAO (2017a). Soil Organic Carbon: the hidden potential. Food and Agriculture Organization of the United Nations, Rome.
- FAO (2017b). Voluntary Guidelines for Sustainable Soil Management. Food and Agriculture Organization, Rome.
- FAO (2017c) Food and Agriculture Organization of the United Nations/International Fund for Agricultural Development/World Food Programme. State of food insecurity in the world 2017. Rome, Italy, 2017
- FAO (2018) Forestry Statistics. Doi: http://www.fao.org/forestry/statistics/80572/en/
- FAO (2018) The state of food security and nutrition in the world. http://www.fao.org/state-of-food-security-nutrition/en/

- FAO (2018). The State of the World's Forests 2018 Forest pathways to sustainable development. Rome, Food and Agriculture Organization.
- FAO and ITPS (2015). Status of the World's Soil Resources (SWSR) Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy
- FAO, UNICEF, WFP and WHO, (2017). The State of Food Security and Nutrition in the World 2017. Building resilience for peace and food security. Rome, FAO.
- FAO(2017). Forest Products 2015. Food and Agriculture Organization, Rome (2015)
- Farnsworth, N.R. & D.D. Soejarto 1991. Global importance of medicinal plants. In Akerele, O.,
 V. Heywood & H. Synge, eds., Conservation of medicinal plants. pp. 25–51,
 Cambridge, UK, University Press.
- Feld, C. K., et al. (2009). "Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales." Oikos 118(12): 1862-1871.
- Fernandez-Gimenez, M. E. (2015). ""A shepherd has to invent": Poetic analysis of socialecological change in the cultural landscape of the central Spanish Pyrenees." Ecology and Society 20(4).
- Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E, et al. Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 2002;35(Sup- pl 1):S6–16
- Flies, E. J., Skelly, C., Lovell, R., Breed, M. F., Phillips, D., & Weinstein, P. (2018). Cities, biodiversity and health: we need healthy urban microbiome initiatives. Cities & Health, 1-8.
- Foley, J. A., et al. (2011). "Solutions for a cultivated planet." Nature 478: 337.
- Folke, C. 2006. Resilience: The emergence of a perspective for social–ecological systems analyses. Global Environmental Change 16(3): 253-267.
- Food and Agriculture Organization of the United Nations (FAO). (2018). FAOSTAT statistics database. [Rome] :FAO,
- Forouzanfar, M.H., et al. 2016. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet 388: 1659-1724.
- Fortucci, P., 2002, July. The contribution of cotton to economy and food security in developing countries. In Note presented at the Conference "Cotton and Global Trade Negotiations" sponsored by the World Bank and ICAC (pp. 8-9).
- Foucault M. (1966). Les mots et les choses, Gallimard Paris.
- Freeman, A.M. III, J. Herriges, and C.L. Kling. 2014. The Measurement of Environmental and Resource Values: Theory and Methods, Third Edition. New York: Resources for the Future Press.
- Friedberg C. 2014 Protéger les humains et les non-humains. L'exemple des Bunaq de Lamaknen. Revue d'ethnoécologie 6, DOI : 10.4000/ethnoecologie.1875.

- Frumkin, H., et al. (2017) "Nature Contact and Human Health: A Research Agenda." Environmental health perspectives 125(7): 075001.
- Fukuda S, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469:543–547
- Gaiser T., Stahr K. (2013) Soil Organic Carbon, Soil Formation and Soil Fertility. In: Lal R., Lorenz K., Hüttl R., Schneider B., von Braun J. (eds) Ecosystem Services and Carbon Sequestration in the Biosphere. Springer, Dordrecht.
- Galan, A. N. (Book Review). (2007). Synthetic Worlds : Nature, Art, and the Chemical Industry by E.L. Agustí Nieto-Galan. The University of Chicago Press on behalf of The History of Science Society. Stable URL : http://www.jstor.org/stable/10.1086/524267, 98(3), 652–653. Retrieved from url: http://www.jstor.org/stable/10.1086/524267
- Gallois, S., & Reyes-Garciá, V. (2018). Children and ethnobiology. Journal of Ethnobiology, 38(2), 155–169. https://doi.org/10.2993/0278-0771-38.2.155
- Garibaldi LA, Aizen MA, Klein AM, Cunningham SA y Harder LD (2011) Global growth and stability in agricultural yield decrease with pollinator dependence. Proceedings of the National Academy of Sciences, USA 108:5909-5914.
- Garibaldi LA, Carvalheiro LG, Vaissière BE, Gemmill-Herren B, Hipólito J, Freitas BM, et al. (2016) Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351:388-391.
- Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, et al. (2013) Wild pollinators enhance fruit set of crops regardless of honey-bee abundance. Science 339:1608-1611.
- Garibaldi, L. A., Steffan-Dewenter, I., Kremen, C., Morales, J. M., Bommarco, R., Cunningham,
 S. A., ... & Holzschuh, A. (2011). Stability of pollination services decreases with isolation
 from natural areas despite honey bee visits. Ecology letters, 14(10), 1062-1072.
- Garibaldi, Lucas A., Georg KS Andersson, Fabrice Requier, Thijs PM Fijen, Juliana Hipólito, David Kleijn, Néstor Pérez-Méndez, and Orianne Rollin. 2018. 'Complementarity and Synergisms among Ecosystem Services Supporting Crop Yield'. Global Food Security 17: 38–47.
- Garnett, S. T., Burgess, N. D., Fa, J. E., Fernández-Llamazares, Á., Molnár, Z., Robinson, C. J., ... Leiper, I. (2018). A spatial overview of the global importance of Indigenous lands for conservation. Nature Sustainability, 1(7), 369–374. https://doi.org/10.1038/s41893-018-0100-6
- Gascon, M., et al. (2015). "Mental Health Benefits of Long-Term Exposure to Residential Green and Blue Spaces: A Systematic Review." International Journal of Environmental Research and Public Health 12(4).
- Gasparatos A., C.Romeu-Dalmau, G.von MaltitzF.X.JohnsonC.B.JumbeP.StrombergK.Willis. Using an ecosystem services perspective to assess biofuel sustainability. Biomass and Bioenergy. Volume 114, July 2018, Pages 1-7.

- Geijzendorffer, I. R., et al. (2016). "Bridging the gap between biodiversity data and policy reporting needs: An Essential Biodiversity Variables perspective." Journal of Applied Ecology 53(5): 1341-1350.
- GEMS/Water (2018). Progress on Ambient Water Quality Piloting the monitoring methodology and initial findings for SDG indicator 6.3.2, UN Environment on behalf of UN-Water.
- Ghimire S.K., O. Gimenez., R Pradel, D. McKey et Y. Aumeeruddy-Thomas. (2008).
 Demographic variation and population viability in a threatened medicinal and aromatic herb (Nardostachys grandiflora): matrix modelling of harvesting effects in two contrasting habitats, Journal of Applied Ecology 45: 41–51.
- Ghimire, S.K., D. McKey, Y. Aumeeruddy-Thomas (2004). Heterogeneity in ethnoecological knowledge and management of medicinal plants in the Himalayas of Nepal: implications for conservation. Ecology and Society 9(3): 6.
- Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006;312(5778):1355–9.
- Gill, T., (2014). The benefits of children's engagement with nature: A systematic literature review. Children, Youth and Environments, 24(2), 10-34.
- Guerry, A., S. Polasky, J. Lubchenco, R. Chaplin-Kramer, G.C. Daily, R. Griffin, M.H.
 Ruckelshaus, I.J. Bateman, A. Duraiappah, T. Elmqvist, M.W. Feldman, C. Folke, J.
 Hoekstra, P. Kareiva, B. Keeler, S. Li, E. McKenzie, Z. Ouyang, B. Reyers, T. Ricketts, J.
 Rockström, H. Tallis, and B. Vira. 2015. Natural capital informing decisions: From
 promise to practice Proceedings of the National Academy of Sciences 112: 7348-7355.
- Guha-Sapir, D., P. Hoyois and R. Below (2016). Annual Disaster Statistical Review 2016: The Numbers and Trends. Brussels, CRED.
- Guo, L. B., & Gifford, R. M. (2002). Soil Carbon Stocks and Land use change: a met analysis. Global Change Biology, 8(4), 345-360
- Gurr, G. M., et al. (2017). "Habitat Management to Suppress Pest Populations: Progress and Prospects." Annual Review of Entomology 62(1): 91-109.
- Gutiérrez, N. L., et al. (2011). "Leadership, social capital and incentives promote successful fisheries." Nature 470: 386.
- Haahtela, T., Holgate, S., Pawankar, R., Akdis, C. A., Benjaponpitak, S., Caraballo, L., Portnoy, J. & von Hertzen, L. (2013). The biodiversity hypothesis and allergic disease: world allergy organization position statement. World Allergy Organization Journal, 6(1), 1.
- Haase, D. et al. A quantitative review of urban ecosystem service assessments: Concepts, models, and implementation. Ambio 43, 413–433 (2014).
- Haddeland, I., J. Heinke, H. Biemans, S. Eisner, M. Flörke, N. Hanasaki, M. Konzmann, F. Ludwig, Y. Masaki, J. Schewe, T. Stacke, Z. D. Tessler, Y. Wada and D. Wisser (2014).
 Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences 111(9): 3251-3256.

- Haluza, D., et al. (2014). "Green Perspectives for Public Health: A Narrative Review on the Physiological Effects of Experiencing Outdoor Nature." International Journal of Environmental Research and Public Health 11(5).
- Hamilton, A. C. (2004). Medicinal plants, conservation and livelihoods. Biodiversity and Conservation, 13(8), 1477–1517. https://doi.org/10.1023/B:BIOC.0000021333.23413.42
- Hamilton, A., & Aummeeruddy-Thomas, Y. (2013). Maintaining Resources for Traditional Medicine : A Global Overview and a Case Study from Buganda (Uganda). Plant Diversity and Resources, 35(4), 407–423.
- Hammarström, H., et al. (2018). Language Origin. Glottolog 3.2. Jena, Planck Institute for the Science of Human History.
- Hammond, A. M., Kyrou, K., Bruttini, M., North, A., Galizi, R., Karlsson, X., ... Nolan, T. (2017). The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genetics, 13(10), 1–16.
- Hanasaki N, Inuzuka T, Kanae S, Oki T (2010) An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J Hydrol 384:232–244.
- Hanski, I., von Hertzen, L., Fyhrquist, N., Koskinen, K., Torppa, K., Laatikainen, T., ... & Vartiainen, E. (2012). Environmental biodiversity, human microbiota, and allergy are interrelated. Proceedings of the National Academy of Sciences, 109(21), 8334-8339.
- Harden, C. P. (1992). "INCORPORATING ROADS AND FOOTPATHS IN WATERSHED-SCALE HYDROLOGIC AND SOIL EROSION MODELS." Physical Geography 13(4): 368-385.
- Harmsworth, G., et al. (2016). "Indigenous Maori values and perspectives to inform freshwater management in Aotearoa-New Zealand." Ecology and Society 21(4).
- Hartemink, A. E., Hempel, J., Lagacherie, P., McBratney, A., McKenzie, N., MacMillan, R. A., Minasny, B., Montanarella, L., de Mendonça Santos, M. L., Sanchez, P., Walsh, M. & Zhang, G.-L. in Digital Soil Mapping 423-428 (2010). doi:10.1007/978-90-481-8863-5 33
- Hartig, T. & Kahn, P. H. Living in cities, naturally. Science 352, 938–40 (2016).
- Hattam C et al. (2015) Marine ecosystem services: Linking indicators to their classification. Ecological Indicators 49:61–75
- Hein, L., et al. (2016). "Defining Ecosystem Assets for Natural Capital Accounting." PLOS ONE 11(11): e0164460.
- Heinimann, A., Mertz, O., Frolking, S., Christensen, A.E., Hurni, K., Sedano, F., Chini, L.P., Sahajpal, R., Hansen, M., Hurtt, G., 2017. A global view of shifting cultivation: Recent, current, and future extent. PloS One 12, e0184479.
- Heink, U., et al. (2016). "Requirements for the selection of ecosystem service indicators The case of MAES indicators." Ecological Indicators 61: 18-26.
- Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagoti?, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B.,

Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S. & Kempen, B. SoilGrids250m. (2017). Global gridded soil information based on machine learning. PLoS One 12, e0169748.

- Hernandez-Morcillo et al. 2013. Empirical review of cultural ecosystem indicators. Ecological Indicators Volume 29, June 2013, Pages 434-444.
- Herrero, Mario, Philip K. Thornton, Brendan Power, Jessica R. Bogard, Roseline Remans, Steffen Fritz, James S. Gerber, Gerald Nelson, Linda See, Katharina Waha, Reg A. Watson, Paul C. West, Leah H. Samberg, Jeannette van de Steeg, Eloise Stephenson, Mark van Wijk, and Petr Havlík. 2017. 'Farming and the geography of nutrient production for human use: a transdisciplinary analysis', The Lancet Planetary Health, 1: e33-e42.
- Hinchliff, C. E., Smith, S. A., Allman, J. F., Burleigh, J. G., Chaudhary, R., Coghill, L. M., ... Cranston, K. A. (2015). Synthesis of phylogeny and taxonomy into a comprehensive tree of life, 112(41). https://doi.org/10.1073/pnas.1423041112
- Hoffmann, A. R., Proctor, L. M., Surette, M. G., & Suchodolski, J. S. (2016). The microbiome: the trillions of microorganisms that maintain health and cause disease in humans and companion animals. Veterinary pathology, 53(1), 10-21.
- Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 2003;4(3):269–73.
- Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions between the microbiota and the immune system. Science, 336(6086), 1268-1273.
- Hopping, K. A., Chignell, S. M., & Lambin, E. F. (2018). The demise of caterpillar fungus in the Himalayan region due to climate change and overharvesting. Proceedings of the National Academy of Sciences, 115(45), 11489-11494.
- Howard, P. L. (2010). Culture and agrobiodiversity: understanding the links. Nature and culture: rebuilding lost connections. S. Pilgrim and J. Pretty. London, Earthscan: 163-184.
- Hunt, H.W. and D.H. Wall. 2002. Modeling the effects of loss of soil biodiversity on ecosystem function. Global Change Biology, 8:33-50
- Hunter, P. (2017). From imitation to inspiration. EMBO Reports, 18(3), 363 LP-366. Doi http://embor.embopress.org/content/18/3/363.abstract
- Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A. T., et al. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207.
- IARC (2016). Working Group on the Evaluation of Carcinogenic Risk to Humans. Outdoor air pollution. Lyon (FR): International Agency for Research on Cancer. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 109.) 1.2, Sources of air pollutants. Available from: https://www.ncbi.nlm.nih.gov/books/NBK368029/
- IEA Bioenergy (2007). Potential contribution of bioenergy to the world's future energy demand, www.ieabioenergy.com.

- IPBES (2016) Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. S.G. Potts, V. L. Imperatriz-Fonseca, H. T. Ngo, J. C. Biesmeijer, T. D. Breeze, L. V. Dicks, L. A. Garibaldi, R. Hill, J. Settele, A. J. Vanbergen, M. A. Aizen, S. A. Cunningham, C. Eardley, B. M. Freitas, N. Gallai, P. G. Kevan, A. Kovács-Hostyánszki, P. K. Kwapong, J. Li, X. Li, D. J. Martins, G. Nates-Parra, J. S. Pettis, R. Rader, and B. F. Viana (eds.). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany. 36 pages.
- IPBES (2017) Indigenous and Local Knowledge Dialogue for the IPBES Global Assessment. Montreal, Canada, 9 December 2017
- IPBES (2018a) Summary for policymakers of the assessment report on land degradation and restoration of the Intergovernmental Science- Policy Platform on Biodiversity and Ecosystem Services. R. Scholes, L. Montanarella, A. Brainich, N. Barger, B. ten Brink, M. Cantele, B. Erasmus, J. Fisher, T. Gardner, T. G. Holland, F. Kohler, J. S. Kotiaho, G. Von Maltitz, G. Nangendo, R. Pandit, J. Parrotta, M. D. Potts, S. Prince, M. Sankaran and L. Willemen (eds.). IPBES secretariat, Bonn, Germany. 44 pages
- IPBES (2018b) The IPBES regional assessment report on biodiversity and ecosystem services for the Americas. Rice, J., Seixas, C. S., Zaccagnini, M. E., Bedoya-Gaitán, M., and Valderrama N. (eds.). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany. 656 pages
- IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
- IPCC (2018) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. World Meteorological Organization, Geneva, Switzerland, 32 pp
- Ipci, K., Altıntoprak, N., Muluk, N. B., Senturk, M., & Cingi, C. (2017). The possible mechanisms of the human microbiome in allergic diseases. European Archives of Oto-Rhino-Laryngology, 274(2), 617-626.
- Irga, P. J., Burchett, M. D. & Torpy, F. R. Does urban forestry have a quantitative effect on ambient air quality in an urban environment? Atmos. Environ. 120, 173–181 (2015).
- Jackson, J.B., Kirby, M.X., Berger, W.H., Bjorndal, K.A., Botsford, L.W., Bourque, B.J., Bradbury, R.H., Cooke, R., Erlandson, J., Estes, J.A. and Hughes, T.P., 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293(5530): 629-637

- Janhäll, S. (2015) Review on urban vegetation and particle air pollution Deposition and dispersion. Atmospheric Environment 105, 130e137.
- Janif, S. Z., et al. (2016). "Value of traditional oral narratives in building climate-change resilience: insights from rural communities in Fiji." Ecology and Society 21(2).
- Jarvis, A., et al. (2008). "The effect of climate change on crop wild relatives." Agriculture, Ecosystems & Environment 126(1): 13-23.
- Jarvis, D. I., Hodgkin, T., Sthapit, B. R., Fadda, C., Jarvis, D. I., Hodgkin, T., ... Lopez-noriega,
 I. (2011). Critical Reviews in Plant Sciences An Heuristic Framework for Identifying
 Multiple Ways of Supporting the Conservation and Use of Traditional Crop Varieties
 within the Agricultural Production System An Heuristic Framework for Identifying
 Multiple Ways of Varieties within the Agricultural Production System, 2689.
 https://doi.org/10.1080/07352689.2011.554358
- Johns, T., Powell, B., Maundu, P., & Eyzaguirre, P. B. (2013). Agricultural biodiversity as a link between traditional food systems and contemporary development, social integrity and ecological health. Journal of the Science of Food and Agriculture, 93(14), 3433–3442. https://doi.org/10.1002/jsfa.6351
- Johnston, R.J., J. Rolfe, J., Rosenberger, R.S., Brouwer, R. (Eds.). 2015. Benefit Transfer of Environmental and Resource Values: A Guide for Researchers and Practitioners. Springer, Dordrecht, the Netherlands.
- Joly, C. A. (2014). "The conceptual framework of the Intergovernmental Platform on Biodiversity and Ecosystem Services/IPBES." Biota Neotropica 14.
- Jones, K. E., et al. (2008). "Global trends in emerging infectious diseases." Nature 451: 990.
- Jones, L., et al. (2016). "Stocks and flows of natural and human-derived capital in ecosystem services." Land Use Policy 52: 151-162.
- Julliard A-C, Julliard R, Clayton S. (2015) Historical evidence for nature disconnection in a 70year time series of Disney animated films, Public Understanding of Science Vol 24, Issue 6, 2015
- Kahn, M. E. (2005). "The Death Toll from Natural Disasters: The Role of Income, Geography, and Institutions." The Review of Economics and Statistics 87(2): 271-284.
- Kaltenborn, B. (1998) Effects of sense of place on responses to environmental impacts A study among residents in Svalbard in the Norwegian high Arctic. Applied Geography, Vol. 18, No. 2, pp. 169–189.
- Karesh, W.B, A.D., J.O. Lloyd-Smith, J.L., M.A. Dixon, M.Bennett, S.Aldrich, T. Harrington, P. Formenty, and E.H Loh. 2012. 'Ecology of zoonoses: natural and unnatural histories', The Lancet, 380: 1936-45.
- Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L., & Gordon, J. I. (2011). Human nutrition, the gut microbiome and the immune system. Nature, 474(7351), 327.
- Keeler, B. L., et al. (2019). "Social-ecological and technological factors moderate the value of urban nature." Nature Sustainability 2(1): 29-38.

- Keeler, BL, S Polasky, KA Brauman, KA Johnson, JC Finlay, A O'Neill, K Kovacs, B Dalzell (2012) Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proceedings of the National Academy of Sciences of the United States of America 109(45).
- Keenan, R. J. et al. (2015). Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment. Forest Ecology and Management 352: 9–20
- Keesing, F., Belden, L. K., Daszak, P., Dobson, A., Harvell, C. D., Holt, R. D., ... & Myers, S. S. (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468(7324), 647.
- Kennedy, H., et al. (2010). "Seagrass sediments as a global carbon sink: Isotopic constraints." Global Biogeochemical Cycles 24(4).
- KEW (2017) Kew Royal Botanic Gardens State of the world's plants. Chapter : Useful plants-Medicines, at least 28,187, p 22–29. https://stateoftheworldsplants.com/2017/usefulplants.html
- Khanna, Sahil, and Darrell S. Pardi. "Clinical implications of antibiotic impact on gastrointestinal microbiota and Clostridium difficile infection." Expert review of gastroenterology & hepatology 10, no. 10 (2016): 1145-1152.
- Khoury, C. K., A. D. Bjorkman, H. Dempewolf, J. Ramirez-Villegas, L. Guarino, A. Jarvis, L. H. Rieseberg, and P. C. Struik. 2014. 'Increasing homogeneity in global food supplies and the implications for food security', Proceedings of the National Academy of Sciences of the United States of America, 111: 4001-06.
- Khoury, C. K., et al. (2014). "Increasing homogeneity in global food supplies and the implications for food security." Proceedings of the National Academy of Sciences 111(11): 4001.
- Kilpatrick, A M. and S.E. Randolph. (2012) 'Drivers, dynamics, and control of emerging vectorborne zoonotic diseases', The Lancet, 380: 1946-55.
- Kim, K.-H., et al. (2013). "A review on human health perspective of air pollution with respect to allergies and asthma." Environment International 59: 41-52.
- King, K. and A. Church (2013). "'We don't enjoy nature like that': Youth identity and lifestyle in the countryside." Journal of Rural Studies 31: 67-76.
- King. K., Church, R (2013) 'We don't enjoy nature like that': Youth identity and lifestyle in the countryside. , Pages 67-76
- Kirmayer LJ, Dandeneau, S., Marshall, E., Phillips, M.K., Williamson, K.J. (2011) Rethinking Resilience From Indigenous Perspectives. Canadian Journal of Psychiatry, 56(2), 84.91
- Klein Goldewijk, K., A. Beusen, J. Doelman and E. Stehfest (2017). "Anthropogenic land use estimates for the Holocene HYDE 3.2." Earth Syst. Sci. Data 9(2): 927-953.
- Klein, Alexandra-Maria, Bernard E Vaissie, James H Cane, Ingolf Steffan-Dewenter, Saul A Cunningham, Claire Kremen, and Teja Tscharntke. 2007. 'Importance of Pollinators in Changing Landscapes for World Crops.' Proceedings. Biological Sciences / The Royal Society 274 (1608): 303–13.

- Koh, I., Lonsdorf, E. V., Williams, N. M., Brittain, C., Isaacs, R., Gibbs, J., & Ricketts, T. H. (2016). Modeling the status, trends, and impacts of wild bee abundance in the United States. Proceedings of the National Academy of Sciences, 113(1), 140-145.
- Koh, L. P., & Ghazoul, J., (2008). Biofuels, biodiversity, and-people: Understanding the conflicts and finding the opportunities. Biological Conservation, 141, 2450-2460.
- Kreft, H. and W. Jetz (2007). "Global patterns and determinants of vascular plant diversity." Proceedings of the National Academy of Sciences 104(14): 5925.
- Kroeker, K. J., et al. (2010). "Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms." Ecology Letters 13(11): 1419-1434.
- Kuo, M., et al. (2019). "Do Experiences With Nature Promote Learning? Converging Evidence of a Cause-and-Effect Relationship." Frontiers in Psychology 10: 305.
- Lachat, C., et al. (2018). "Dietary species richness as a measure of food biodiversity and nutritional quality of diets." Proceedings of the National Academy of Sciences 115(1): 127.
- Lal, R. (2015a). Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 7: 5875-5895.
- Lal, R. (2015b). Sequestering carbon and increasing productivity by conservation agriculture. Journal of Soil and Water Conservation (70) 3: 55A-62A. doi: 10.2489/jswc.70.3.55A
- Laltaika Elifuraha I. and Kelly M. Askew. Modes of Dispossession of Indigenous Lands and Territories in Africa. https://www.un.org/development/desa/indigenouspeoples/wpcontent/uploads/sites/19/2018/01/Laltaika-and-Akew_UN-paper_rev3.pdf Sourced 2018.09.27
- Lama, Y.C., S.K. Ghimire & Y. Aumeeruddy-Thomas (2001) in collaboration with amchis of Dolpo, Nepal. Medicinal Plants of Dolpo: Amchi's Knowledge and Conservation. People and Plants Initiative, WWF Nepal Program, Katmandou, 150p, 100 color botanical plates, English and Tibetan.
- Lange, K., Buerger, M., Stallmach, A., & Bruns, T. (2016). Effects of antibiotics on gut microbiota. Digestive Diseases, 34(3), 260-268.
- Larson, G. and D. Q. Fuller (2014). "The Evolution of Animal Domestication." Annual Review of Ecology, Evolution, and Systematics 45(1): 115-136.
- Lauer, M. (2012). "Oral Traditions or Situated Practices? Understanding How Indigenous Communities Respond to Environmental Disasters." Human Organization 71(2): 176-187.
- Lawler, J.J., D.J. Lewis, E.Nelson, A.J. Plantinga, S. Polasky, J.C. Withey, D.P. Helmers, S. Martinuzzi, D. Pennington, V.C. Radeloff. 2014. Projected land-use change impacts on ecosystem services in the U.S. Proceedings of the National Academy of Sciences 111(20): 7492-7497.
- Le Quéré, C., et al. (2018). "Global Carbon Budget 2017." Earth Syst. Sci. Data 10(1): 405-448.

- Leaman D. (2015). Traditional Medicine. In Connecting Global Priorities: Biodiversity and Human Health, a state of Knowledge Review. UNEP, CBD, WHO. https://doi.org/10.13140/RG.2.1.3679.6565
- Lee, A. C. K. and R. Maheswaran (2010). "The health benefits of urban green spaces: a review of the evidence." Journal of Public Health 33(2): 212-222.
- Lee, Y. K., & Mazmanian, S. K. (2010). Has the microbiota played a critical role in the evolution of the adaptive immune system?. Science, 330(6012), 1768-1773.
- Lelieveld, Jos, John S Evans, M Fnais, Despina Giannadaki, and Andrea Pozzer. 2015. 'The contribution of outdoor air pollution sources to premature mortality on a global scale', Nature, 525: 367.
- Letourneau, D. K., et al. (2009). "Effects of Natural Enemy Biodiversity on the Suppression of Arthropod Herbivores in Terrestrial Ecosystems." Annual Review of Ecology, Evolution, and Systematics 40(1): 573-592.
- Levi-Strauss, C. (1966). "Anthropology: Its Achievements and Future." Current Anthropology 7(2): 124-127.
- Li, Q., & Zhou, J. M. (2016). The microbiota–gut–brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience, 324, 131-139.
- Liang, Lawrence, "Piracy, Creativity and Infrastructure: Rethinking Access to Culture". Paper July 20, 2009. doi: SSRN: https://ssrn.com/abstract=1436229
- Liang, Shan, Xiaoli Wu, Xu Hu, Tao Wang, and Feng Jin. 2018, Recognizing depression from the microbiota–gut–brain axis." International journal of molecular sciences 19: 6: 1592.
- Liu, J., T. Dietz, S.R. Carpenter, C. Folke, M. Alberti, C.L. Redman, S.H. Schneider, E. Ostrom, A.N. Pell, J. Lubchenco, W.W. Taylor, Z. Ouyang, P. Deadman, T. Kratz, and W. Provencher. 2007. Complexity of coupled human and natural systems. Science 317: 1513-1516
- Liu, X., et al. (2017). "Virtual carbon and water flows embodied in international trade: a review on consumption-based analysis." Journal of Cleaner Production 146: 20-28.
- Liu, Y. Y., A. I. J. M. van Dijk, R. A. M. de Jeu, J. G. Canadell, M. F. McCabe, J. P. Evans and G. Wang (2015). "Recent reversal in loss of global terrestrial biomass." Nature Climate Change 5: 470.
- Logan, A. C., Jacka, F. N., & Prescott, S. L. (2016). Immune-microbiota interactions: dysbiosis as a global health issue. Current allergy and asthma reports, 16(2), 13.
- Loh, J., et al. (2005). "The Living Planet Index: using species population time series to track trends in biodiversity." Philosophical Transactions of the Royal Society B: Biological Sciences 360(1454): 289.
- Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., & Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature, 489(7415), 220.
- Luederitz, C. et al. A review of urban ecosystem services: Six key challenges for future research. Ecosyst. Serv. 14, 98–112 (2015).

- Lynch, A. J., et al. (2016). "The social, economic, and environmental importance of inland fish and fisheries." Environmental Reviews 24(2): 115-121.
- Lynch, S. V., & Pedersen, O. (2016). The human intestinal microbiome in health and disease. New England Journal of Medicine, 375(24), 2369-2379.
- Lyver, P. O. B., et al. (2018). "Complementarity of indigenous and western scientific approaches for monitoring forest state." Ecological Applications 28(7): 1909-1923.
- MA (2005). Millennium Ecosystem Assessment: Ecosystems and Human Well-Being: Biodiversity Synthesis. World Resources Institute, Washington DC.
- MacDonald, G. K., et al. (2015). "Rethinking Agricultural Trade Relationships in an Era of Globalization." BioScience 65(3): 275-289.
- MacGillivray, D. M., & Kollmann, T. R. (2014). The role of environmental factors in modulating immune responses in early life. Frontiers in immunology, 5, 434.
- Macisaac, H. J. (1996). "Potential Abiotic and Biotic Impacts of Zebra Mussels on the Inland Waters of North America." American Zoologist 36(3): 287-299.
- Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 2004;4(6):478–85.
- Maes, J., et al. (2018). Mapping and Assessment of Ecosystems and their Services: An analytical framework for ecosystem condition. Luxembourg, Publications office of the European Union.
- Maffi, L. (2002). Endangered languages, endangered knowledge. International Social Science Journal, 54(173), 385–393.
- Mahan, B., S. Polasky, and R. Adams. 2000. Valuing urban wetlands: a property price approach. Land Economics 76(1): 100-113.
- Marchesi, J. R., Adams, D. H., Fava, F., Hermes, G. D., Hirschfield, G. M., Hold, G., et al. (2016). The gut microbiota and host health: a new clinical frontier. Gut, 65(2), 330-339.
- Marshall, et al. (2012) Transformational capacity and the influence of place and identity. Environ. Res. Lett., 7 (3), Article 034022
- Martín-López, B., et al. (2014). "Trade-offs across value-domains in ecosystem services assessment." Ecological Indicators 37: 220-228.
- Martin, G. J. (1995). Ethnobotany: A methods manual. London, Chapaman and Hill.
- Mastrangelo, M. E. and P. Laterra (2015). "From biophysical to social-ecological trade-offs: integrating biodiversity conservation and agricultural production in the Argentine Dry Chaco." Ecology and Society 20(1).
- Mayer, P. M., S. K. Reynolds, M. D. McCutchen and T. J. Canfield (2007). "Meta-Analysis of Nitrogen Removal in Riparian Buffers." Journal of Environmental Quality 36(4): 1172-1180.
- McAdoo, B. G., et al. (2006). "Smong: How an Oral History Saved Thousands on Indonesia's Simeulue Island during the December 2004 and March 2005 Tsunamis." Earthquake Spectra 22(S3): 661-669.

- McAdoo, B. G., et al. (2009). "Indigenous knowledge and the near field population response during the 2007 Solomon Islands tsunami." Natural Hazards 48(1): 73-82.
- McCluskey, S. M. and R. L. Lewison (2008). "Quantifying fishing effort: a synthesis of current methods and their applications." Fish and Fisheries 9(2): 188-200.
- McCormick, R (2017). Does access to green space impact the mental well-being of children: A systematic review. Journal of Pediatric Nursing
- McGregor, D. (2004). "Coming Full Circle: Indigenous Knowledge, Environment, and Our Future." American Indian Quarterly 28(3/4): 385-410.
- McIlroy, J., Ianiro, G., Mukhopadhya, I., Hansen, R., & Hold, G. L. (2018). the gut microbiome in inflammatory bowel disease—avenues for microbial management. Alimentary pharmacology & therapeutics, 47(1), 26-42.
- McKey et al. (2014). New approaches to pre-Columbian raised-field agriculture: ecology of seasonally flooded savannas, and living raised fields in Africa, as windows on the past and the future. In In: Eds S. Rostain, Amazonia. Memorias de las Conferencias Magistrales des 3er Encuerntro International de Aequeologia Amazonica (pp. 91–136). Quito.
- McMichael AJ, Woodruff RE, Hales S. 2006. Climate change and human health: present and future risks. Lancet 367:859–869.
- McMichael, C. H., et al. (2014). "Predicting pre-Columbian anthropogenic soils in Amazonia." Proceedings of the Royal Society B: Biological Sciences 281(1777): 20132475.
- Mcmillen, H. L., Ticktin, T., Friedlander, A., Jupiter, S. D., Thaman, R., Campbell, J., ... Orcherton, D. F. (2014). Small islands, valuable insights: systems of customary resource use and. Ecology And Society, 19(4). https://doi.org/10.5751/ES-06937-190444
- Milcu AI, Hanspach J, Abson D, Fischer J (2013) Cultural Ecosystem Services: A Literature Review and Prospects for Future Research. Ecol. Soc., 18(3)
- Milliman, J. D., et al. (2008). "Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000." Global and Planetary Change 62(3–4): 187-194.
- Mills, J. G., Weinstein, P., Gellie, N. J., Weyrich, L. S., Lowe, A. J., & Breed, M. F. (2017). Urban habitat restoration provides a human health benefit through microbiome rewilding: the Microbiome Rewilding Hypothesis. Restoration Ecology, 25(6), 866-872.
- Mitchard, E.T.A. 2018. The tropical forest carbon cycle and climate change. Nature 559:527-534
- Montakhab, A., B. Yusuf, A. H. Ghazali and T. A. Mohamed (2012). "Flow and sediment transport in vegetated waterways: a review." Reviews in Environmental Science and Bio/Technology 11(3): 275-287.
- Morán et al., 2010
- Mosca, A., Leclerc, M., & Hugot, J. P. (2016). Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem?. Frontiers in microbiology, 7, 455.
- Mu, Q., et al. (2012). "A Remotely Sensed Global Terrestrial Drought Severity Index." Bulletin of the American Meteorological Society 94(1): 83-98.

- Mu, Q., M. Zhao and S. W. Running (2013). "MODIS global terrestrial evapotranspiration (ET) product (NASA MOD16A2/A3) collection 5. NASA Headquarters."
- Mulholland, P. J., et al. (2008). "Stream denitrification across biomes and its response to anthropogenic nitrate loading." Nature 452(7184): 202-205.
- Murray, C. J., et al. (1994). "Global comparative assessments in the health sector: disease burden, expenditures and intervention packages."
- Murray, CJ. 1994. Quantifying the burden of disease: the technical basis for disability-adjusted life years. Bulletin of the World Health Organization 72(3): 429–445.
- Myers, S. S., Gaffikin, L., Golden, C. D., Ostfeld, R. S., Redford, K. H., Ricketts, T. H., ... & Osofsky, S. A. (2013). Human health impacts of ecosystem alteration. Proceedings of the National Academy of Sciences, 110(47), 18753-18760.
- Nagpal, R., Yadav, H., & Marotta, F. (2014). Gut microbiota: the next-gen frontier in preventive and therapeutic medicine?. Frontiers in medicine, 1, 15.
- Naino Jika, A. K., Dussert, Y., Raimond, C., Garine, E., Luxereau, A., Takvorian, N., ... Robert, T. (2017). Unexpected pattern of pearl millet genetic diversity among ethno-linguistic groups in the Lake Chad Basin. Heredity, 118(5), 491–502.
 https://doi.org/10.1038/hdy.2016.128
- National Research Council (NRC). (2000). Watershed Management for Potable Water Supply.
 - Assessing the New York City Strategy. Washington, DC: The National Academies Press.
- Nazarea, V. (2016). A View from a point. Ethnoecology and situated knowledge. In A. H. Haenn, N., R. Wilk (Ed.), The Environment in Anthropology: A reader in Ecology, Culture and Sustainaible living (pp. 41–49). New York University Press.
- Nelson, E., G. Mendoza, J. Regetz, S. Polasky, H. Tallis, D.R. Cameron, K.M.A. Chan, G. Daily, J. Goldstein, P. Kareiva, E. Lonsdorf, R. Naidoo, T.H. Ricketts and M. R. Shaw. 2009.
 Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment 7(1): 4–11.
- Nelson, E., S. Polasky, D.J. Lewis, A.J. Plantinga, E. Lonsdorf, D White, D. Bael and J.J. Lawler. 2008. Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape. Proceedings of the National Academy of Sciences of the United States of America 105(28): 9471-9476.
- Ness, A.R., and J.W. Powles. Fruit and vegetables, and cardiovascular disease: a review. International Journal of Epidemiology 26(1): 1–13. https://doi.org/10.1093/ije/26.1.1
- Newman, D. J., & Cragg, G. M. (2012). Natural Products As Sources of New Drugs over the 30 Years from 1981 to 2010. Journal of Natural Productws, Review(75), 311–335. https://doi.org/335 dx.doi.org/10.1021/np200906s
- Newman, D.J., Cragg, G.M., & Snader, K. (2003). Natural Products as sources of New Drugs over the Period 1981 2002. Journal of Natural Products, 66(7), 1022–1037.
- Niemeijer, D. and R. S. de Groot (2008). "A conceptual framework for selecting environmental indicator sets." Ecological Indicators 8(1): 14-25.

- Nordhaus, W.D. (2007a) Critical Assumptions in the Stern Review on Climate Change. Science 317: 201-202.
- Nordhaus, W.D. (2007b) The Stern Review of the Economics of Climate Change. Journal of Economic Literature 45(3): 686–702.
- Nowak, D. J., D. E. Crane, and J. C. Stevens. 2006. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening 4:115-123.
- O'Hara, A. M., & Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO reports, 7(7), 688-693.
- Oerke, E-C. 2006. 'Crop losses to pests', The Journal of Agricultural4 31-43.
- Olander, L.P., R.J. Johnston, H. Tallis, J. Kagan, L.A. Maguire, S. Polasky, D. Urban, J. Boyd, L. Wainger, and M. Palmer. (2018) Benefit relevant indicators: Ecosystem services measures that link ecological and social outcomes. Ecological Indicators 85: 1262-1272.
- Olsen, K. M. and J. F. Wendel (2013). "A Bountiful Harvest: Genomic Insights into Crop Domestication Phenotypes." Annual Review of Plant Biology 64(1): 47-70.
- Olwig, K. R. (2004). "This is not a Landscape": Circulating Reference and Land Shaping.
 European Rural Landscapes: Persistence and Change in a Globalising Environment. H.
 Palang, H. Sooväli, M. Antrop and G. Setten. Dordrecht, Springer Netherlands: 41-65.
- Organization for Economic Cooperation and Development. 2016. The economic consequences of outdoor air pollution. OECD Publishing, Paris.
- Østerberg, J. T., et al. (2017). "Accelerating the Domestication of New Crops: Feasibility and Approaches." Trends in Plant Science 22(5): 373-384.
- Ostrom, E. (1990) Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge, UK: Cambridge University Press.Ostrom (1990)
- Ottino-Garanger, Pierre, et al. 2016. Tapu and kahui in the Marquesas. In The rahui: Legal pluralism in Polynesian traditional manageces and territories. Ed. Tamatoa Bambridge. ANU Press.
- Ouyang, Z., H. Zheng, Y. Xiao, S. Polasky, J. Liu, W. Xu, Q. Wang , L. Zhang, Y. Xiao, E. Rao, L. Jiang, F. Lu, X. Wang, G. Yang, S. Gong, B. Wu, Y. Zeng, W. Yang, G.C. Daily. 2016. Improvements in ecosystem services from investments in natural capital. Science 352: 1455-1459.
- Palang, H., T. Spek, and M. Stenseke, Digging in the past: New conceptual models in landscape history and their relevance in peri-urban landscapes. Landscape and Urban Planning, 2011. 100(4): 344-346.
- Pan et al., 2011. A large and persistent carbon sink in the world's forests. Science 333, 988-993.
- Panagos, P., G. Standardi, P.Borrelli, E. Lugato, L.Montanarella, F.Bosello. (2018) Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degradation & Development, 29(3): 471-484.
- Parashar, A., & Udayabanu, M. (2017). Gut microbiota: implications in Parkinson's disease. Parkinsonism & related disorders, 38, 1-7.

- Pascua, Pua'ala, McMillen, Heather, Ticktin, Tamara, Vaughan, Mehana, Winter, Kawika B. (2017) Beyond services: A process and framework to incorporate cultural, genealogical, place-based, and indigenous relationships in ecosystem service assessments. Ecosystem Services, 26, 465–475.
- Pascual, U., Balvanera, P., Diaz, S., Pataki, G., Roth, E., Stenseke, M., Watson, R., Dessane, E., Breslow, S., Islar, M., Kelemen, E., Keune, H., Maris, V., Pengue, W., Quaas, M., Subramanian, S., Wittmer, H., Mohamed, A., Al-Hafedh, Y., Asah, S., Berry, P., Bilgin, E., Bullock, C., Cáceres, D., Golden, C., Gómez-Baggethun, E., González-Jiménez, D., Houdet, J., Kumar, R., May, P., Mead, A., O'Farrell, P., Pacheco-Balanza, D., Pandit, R., Pichis-Madruga, R., Popa, F., Preston, S., Saarikoski, H., Strassburg, B., Verma, M., Yagi, N., Ahn, S., Amankwah, E., Daly-Hassen, H., Figueroa, E., Ma, K., van den Belt, M. & Wickson, F. (2017) Valuing nature's contributions to people: The IPBES approach. Current Opinion in Environmental Sustainability, 6–16.
- Pataki, D. E., et al. (2011). "Transpiration of urban forests in the Los Angeles metropolitan area." Ecological Applications 21(3): 661-677.
- Patrick D. Nunn & Nicholas J. Reid (2016) Aboriginal Memories of Inundation of the Australian Coast Dating from More than 7000 Years Ago, Australian Geographer, 47:1, 11-47, DOI: 10.1080/00049182.2015.1077539
- Paul, S. K. and J. K. Routray (2013). An Analysis of the Causes of Non-Responses to Cyclone Warnings and the Use of Indigenous Knowledge for Cyclone Forecasting in Bangladesh. Climate Change and Disaster Risk Management. W. Leal Filho. Berlin, Heidelberg, Springer Berlin Heidelberg: 15-39.
- Pauly, D., & Zeller, D. (2016). Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nature communications, 7: 1-9. NATURE COMMUNICATIONS | 7:10244 | DOI: 10.1038/ncomms10244 |www.nature.com/naturecommunications
- Pautasso, M., Aistara, G., Barnaud, A. et al. (2013). Seed exchange networks for agrobiodiversity conservation . A review. Agron. Sustain. Dev. (2013) 33: 151. https://doiorg.inee.bib.cnrs.fr/10.1007/s13593-012-0089-6.
- Pemberton, R. W. (2003). Persistence and change in traditional use of insects in contemporary East Asian cultures. Les insects dans la tradition orale–insects in oral literature and tradition. E. Motte-Florac and J. M. C. Thomas. Leuven, Belgium, Peeters: 139-154.
- Peters, G.P. Davis S.J., R. Andrew (2012) A synthesis of carbon in international trade. Biogeosciences 9: 3247-3276.
- Peters, G.P., Minx J.C., Weber C.L., and Edenhofer O. (2011) Growth in emission transfers via international trade from 1990 to 2008 Proc Natl Acad Sci USA 108: 8903-8908
- Pierzynski, G.M., and Brajendra (eds.). 2017. Threats to Soils: Global Trends and Perspectives. Global Land Outlook Working Paper. United Nations Convention to Combat Desertification.

- Pimm, S.L. et al. 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014). DOI: 10.1126/science.1246752
- Pironon, S., I. Ondo, M. Diazgranados, A. Baquero, R. Allkin, C. Canteiro, S. Hargreaves, A. Hudson, W. Milliken, M. Nesbitt, R. Turner, T. Ulian and K. Willis (in review). "Exploring the global distribution of people's plants."
- Plieninger, T, Bieling, C, Fagerholm, N, Byg, A, Hartel, T, Hurley, P, López-Santiago, CA,
 Nagabhatla, N, Oteros-Rozas, E, Raymond, CM, van der Horst, D & Huntsinger, L 2015,
 'The role of cultural ecosystem services in landscape management and planning' Current
 Opinion in Environmental Sustainability, vol. 14, pp. 28-33. DOI: Plummer, M.L. (2009)
 Assessing benefit transfer for the valuation of ecosystem services. Frontiers in Ecology
 and Environment 7(1): 38-45.
- Plieninger, T., T. Kizos, C. Bieling, L. Le Dû-Blayo, M.-A. Budniok, M. Bürgi, C. L. Crumley, G. Girod, P. Howard, J. Kolen, T. Kuemmerle, G. Milcinski, H. Palang, K. Trommler, and P. H. Verburg. 2015. Exploring ecosystem-change and society through a landscape lens: recent progress in European landscape research. Ecology and Society 20(2): 5. http://dx.doi.org/10.5751/ES-07443-200205
- Pogson M., Hastings A., and Smith P. How does bioenergy compare with other land-based renewable energy sources globally? GCB Bioenergy (2013) 5, 513–524, doi: 10.1111/gcbb.1.2013
- Polasky, S. K. Johnson, B. Keeler, K. Kovacs, E. Nelson, D. Pennington, A. Plantinga, and J. Withey. (2012). Are investments to promote biodiversity conservation and ecosystem services aligned? Oxford Review of Economic Policy 28(1): 139-163.
- Polasky, S., and K. Segerson. (2009) Integrating ecology and economics in the study of ecosystem services: Some lessons learned. Annual Review of Resource Economics 1: 409-434.
- Polasky, S., E. Nelson, J. Camm, B. Csuti, P. Fackler, E. Lonsdorf, C. Montgomery, D. White, J. Arthur, B. Garber-Yonts, R. Haight, J. Kagan, A. Starfield, and C. Tobalske. (2008). Where to put things? Spatial land management to sustain biodiversity and economic returns. Biological Conservation 141(6): 1505-1524.
- Pongratz, J., et al. (2017). "Models meet data: Challenges and opportunities in implementing land management in Earth system models." Global Change Biology 24(4): 1470-1487.
- Pope, C.A. III and D.W. Dockery. (1999) Epidemiology of Particle Effects. Air Pollution and Health 31:673-705.
- Portney, P.R. and J.P. Weyant. (1999) Discounting and Intergenerational Equity. Washington, DC: Resources for the Future.
- Potschin, M., Haines-Young, R., Fish, R., Turner, R.K. (Eds.), 2006. (Eds.), Routledge Handbook of Ecosystem Services. Routledge, London and New York, pp. 352–353.
- Pott, A., Otto, M., & Schulz, R. (2018). Impact of genetically modified organisms on aquatic environments: Review of available data for the risk assessment. Science of the Total Environment, 635, 687–698.

- Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J & Vanbergen AJ (2016) Safeguarding pollinators and their values to human well-being. Nature 540:220-229.
- Potts SG, Imperatriz-Fonseca VL, Ngo HT, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, et al. (eds.) (2016) IPBES: Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. 36 p, Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany. ISBN 978-92-807-3568-0.
- Powe, N. A. and Willis K. G. (2004) Mortality and morbidity benefits of air pollution (SO2 and PM10) absorption attributable to woodland in Britain, J. Environ. Manage. 70, 119–128
- Powell, B., Thilsted, S. H., Ickowitz, A., Termote, C., Sunderland, T., & Herforth, A. (2015). Improving diets with wild and cultivated biodiversity from across the landscape. Food Security, 7(3), 535–554. https://doi.org/10.1007/s12571-015-0466-5
- Pregitzer, K. S. and E. S. Euskirchen (2004). "Carbon cycling and storage in world forests: biome patterns related to forest age." Global Change Biology 10(12): 2052-2077.
- Pruss, A., D. Kay, L. Fewtrell and J. Bartram (2002). "Estimating the Burden of Disease from Water, Sanitation, and Hygiene at a Global Level." Environmental Health Perspectives 110(5): 537-542.
- Purvis, A., et al. (2018). Chapter Five Modelling and Projecting the Response of Local Terrestrial Biodiversity Worldwide to Land Use and Related Pressures: The PREDICTS Project. Advances in Ecological Research. D. A. Bohan, A. J. Dumbrell, G. Woodward and M. Jackson, Academic Press. 58: 201-241.
- Qing Li. 2018. 'Forest Bathing' Is Great for Your Health. Here's How to Do It. http://time.com/5259602/japanese forest-bathing/
- Rafidison V., Rakotoanadahy B., Rakototomaro J-F., Rafanomezantsoa E., Rasabo E.,
 Rakotozafy R., Aumeeruddy-Thomas Y. (2017) Pratiques et connaissances naturalistes des communautés Betsileo: lisière du corridor forestier Andringitra-Ranomafana,
 Madagascar. In: M. Roué, N. Césard, Y. C. Adou Yao and A. Oteng-Yeboah (eds.). 2017.
 Knowing our Lands and Resources: Indigenous and Local Knowledge of Biodiversity and Ecosystem Services in Africa. Knowledges of Nature 8. IPBES Global Dialogue Proceedings, UNESCO: Paris. p 96-106.

http://climatefrontlines.org/sites/default/files/ipbes/IPBES_in_Africa_2015.pdf

- Ramankutty, N., A.T. Evan, C. Monfreda, and J.A. Foley (2008), Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000.Global Biogeochemical Cycles 22, GB1003, doi:10.1029/2007GB002952
- Rattan Lal & William C. Moldenhauer (1987) Effects of soil erosion on crop productivity, Critical Reviews in Plant Sciences, 5:4, 303-367, DOI: 10.1080/07352688709382244

- Raudsepp-Hearne, C., G.D. Peterson, and E.M. Bennett. (2010b) Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proceedings of the National Academy of Sciences USA 107: 5242-5247.
- Raudsepp-Hearne, C., G.D. Peterson, M. Tengö, E.M. Bennett, T. Holland, K. Benessaiah, G.K. MacDonald, and L. Pfeifer. (2010). Untangling the environmentalist's paradox: Why is human well-being increasing as ecosystem services degrade? BioScience 60(8): 576-589.
- Ravallion, M. 2001. Growth, inequality, and poverty: Looking beyond averages. World Development 29(11): 1813-1821.
- Raymond, P. A., et al. (2013). "Global carbon dioxide emissions from inland waters." Nature 503: 355.
- Reckinger, R. and F. Régnier (2017). "Diet and public health campaigns: Implementation and appropriation of nutritional recommendations in France and Luxembourg." Appetite 112: 249-259.
- Regan, E. C. et al. Global Trends in the Status of Bird and Mammal Pollinators. Conserv. Lett. 8, 397–403 (2015).
- Reis, V., V. Hermoso, S. K. Hamilton, D. Ward, E. Fluet-Chouinard, B. Lehner and S. Linke (2017). "A Global Assessment of Inland Wetland Conservation Status." BioScience 67(6): 523-533.
- Renaud, F. G., K. Sudmeier-Rieux and M. Estrella (2013). The role of ecosystems in disaster risk reduction, United Nations University Press.
- Ribot, J. C. and N. L. Peluso (2003). "A Theory of Access*." Rural Sociology 68(2): 153-181.
- Riccio, P., & Rossano, R. (2018). Diet, gut microbiota, and vitamins D+ A in multiple sclerosis. Neurotherapeutics, 15(1), 75-91.
- Richerzhagen, C. (2010). Protecting Biological Diversity. The effectiveness of access and benefit sharing regimes. London: Routeldge.
- Richerzhagen, C. (2011) Effective governance of access and benefit-sharing under the Convention on Biological Diversity. Biodiversity and Conservation 20, 2243-2261. doi:10.1007/s10531-011-0086-0 (2011).
- Ricketts, T. H., K. B. Watson, I. Koh, A. M. Ellis, C. C. Nicholson, S. Posner, L. L. Richardson and L. J. Sonter (2016). "Disaggregating the evidence linking biodiversity and ecosystem services." Nature Communications 7: 13106.
- Rieder, R., Wisniewski, P. J., Alderman, B. L., & Campbell, S. C. (2017). Microbes and mental health: a review. Brain, behavior, and immunity, 66, 9-17.
- Rodell, M., et al. (2018). "Emerging trends in global freshwater availability." Nature 557(7707): 651-659.
- Rodriguez, J. P., T. D. Beard, E. M. Bennett, G. S. Cumming, S. J. Cork, J. Agard, A. P. Dobson, and G. D. Peterson. (2006). Trade-offs across space, time, and ecosystem services. Ecology and Society 11:28.
- Roncoli, C., et al. (2002). "Reading the Rains: Local Knowledge and Rainfall Forecasting in Burkina Faso." Society & Natural Resources 15(5): 409-427.

- Rook, G. A. (2013). Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health. Proceedings of the National Academy of Sciences, 110(46), 18360-18367.
- Rook, G. A., Raison, C. L., & Lowry, C. A. (2014). Microbiota, immunoregulatory old friends and psychiatric disorders. In Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease (pp. 319-356). Springer, New York, NY.
- Rook, G. and Knight, R. "Environmental microbial diversity and noncommunicable diseases" in WHO and CBD (2015), Connecting Global Priorities: Biodiversity and Human Health, a state of knowledge review, WHO, Geneva.
- Roullier, C., et al. (2013). "Historical collections reveal patterns of diffusion of sweet potato in Oceania obscured by modern plant movements and recombination." Proceedings of the National Academy of Sciences 110(6): 2205.
- Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature reviews immunology, 9(5), 313.
- Runting, R.K., B.A. Bryan, L.E. Dee, F.J.F. Maseyk, L. Mandle, P. Hamel, K.A. Wilson, K. Yetka, H.P. Possingham, and J.R. Rhodes. (2017) Incorporating climate change into ecosystem service assessments and decisions: a review. Global Change Biology 23:28–41.
- Salpeteur, M., L. Calvet-Mir, I. Diaz-Reviriego, and V. Reyes-García. 2017. Networking the environment: social network analysis in environmental management and local ecological knowledge studies. Ecology and Society 22(1):41. https://doi.org/10.5751/ ES-08790-220141
- Sanchez, P. A., Ahamed, S., Carré, F., Hartemink, A. E., Hempel, J., Huising, J., Lagacherie, P., McBratney, A. B., McKenzie, N. J., Mendonça-Santos, M. de L., Minasny, B., Montanarella, L., Okoth, P., Palm, C. A., Sachs, J. D., Shepherd, K. D., Vågen, T.-G., Vanlauwe, B., Walsh, M. G., Winowiecki, L. A. & Zhang, G.-L. Environmental science. (2009). Digital soil map of the world. Science 325, 680-681.
- Sandel, M.J. 2012. What Money Can't Buy: The Moral Limits to Markets. New York: Farrar, Straus and Giroux.
- Sander, H., and S. Polasky. 2009. The value of views and open space: Estimates from a hedonic pricing model for Ramsey County, Minnesota, USA. Land Use Policy 26(3): 837-845.
- Sanderman, J., et al. (2017). "Soil carbon debt of 12,000 years of human land use." Proceedings of the National Academy of Sciences 114(36): 9575.
- Sandifer, P. A., Sutton-Grier, A. E., & Ward, B. P. (2015). Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosystem Services, 12, 1-15.
- Sanga, G. and G. Ortalli (2004). Nature knowledge: ethnoscience, cognition, and utility, Berghahn Books.
- Sargisson, R. and McLean, I.G. (2012). Children's use of nature in New Zealand playgrounds. Children, Youth and Environments, 22(2), 144-16

- Sargisson, R., & McLean, I. G. (2012). Children's use of nature in New Zealand playgrounds. Children, Youth and Environments, 22(2), 144–163.
- Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology 2008;134(2):577–94.
- Saslis-Lagoudakis CH, Hawkins JA, Greenhill SJ, Pendry CA, Watson MF, Tuladhar-Douglas W, Baral SR, Savolainen V. 2014 The evolution of traditional knowledge: environment shapes medicinal plant use in Nepal. Proc. R. Soc. B 281: 20132768. http://dx.doi.org/10.1098/rspb.2013.2768
- Saslis-Lagoudakis, C. H., Savolainen, V., Williamson, E. M., Forest, F., Wagstaff, S. J., Baral, S. R., ... Hawkins, J. A. (2012). Phylogenies reveal predictive power of traditional medicine in bioprospecting. Proceedings of the National Academy of Sciences, 109(39), 15835–15840. https://doi.org/10.1073/pnas.1202242109
- Sato, M. (2014) Embodied carbon in trade: a survey of the empirical literature. Journal of Economics Surveys 28 (5): 831-861.
- Satterfield, T., et al. (2013). "Culture, intangibles and metrics in environmental management." Journal of Environmental Management 117: 103-114.
- Satz, D., et al. (2013). "The Challenges of Incorporating Cultural Ecosystem Services into Environmental Assessment." AMBIO 42(6): 675-684.
- Saunders, M.E. and G.W. Luck, 2016. Limitations of the ecosystem services versus disservices dichotomy. Conservation Biology 30: 1363-1365.
- Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature ecology & evolution, 1.
- Scanlan PD, Shanahan F, Clune Y, Collins JK, O'Sullivan GC, O'Riordan M, et al. Cultureindependent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol 2008;10(3):789–98.
- Schaub, B., & Vercelli, D. (2015). Environmental protection from allergic diseases: from humans to mice and back. Current opinion in immunology, 36, 88-93.
- Scherr, S. J. (2000). "A downward spiral? Research evidence on the relationship between poverty and natural resource degradation." Food Policy 25(4): 479-498.
- Schiermeier, Q., et al. (2008). "Energy alternatives: Electricity without carbon." Nature News 454(7206): 816-823.
- Schindler, D. E., et al. (2010). "Population diversity and the portfolio effect in an exploited species." Nature 465: 609.
- Schippmann, U., Leaman, D., & Cunningham, A. B. (2006). A Comparison of Cultivation and Wild Collection of Medicinal and Aromatic Plants Under Sustainability Aspects. Medicinal and Aromatic Plants, 75–95. https://doi.org/10.1104/pp.900074
- Scholes, R. J. and R. Biggs (2005). "A biodiversity intactness index." Nature 434: 45.
- Seghezzo, L., et al. (2011). "Native Forests and Agriculture in Salta (Argentina): Conflicting Visions of Development." The Journal of Environment & Development 20(3): 251-277.

- Seitzinger, S., J. A. Harrison, J. K. Bohlke, A. F. Bouwman, R. Lowrance, B. Peterson, C. Tobias and G. Van Drecht (2006). "Denitrification across landscapes and waterscapes: A synthesis." Ecological Applications 16(6): 2064-2090.
- Sekirov, I., Russell, S. L., Antunes, L. C. M., & Finlay, B. B. (2010). Gut microbiota in health and disease. Physiological reviews, 90(3), 859-904.
- Setelle J. (1998). Land use changes and conservation of natural resources_ agroecological research in Philippine rice terraces. PLITS, 16(2), 181–204.
- Seto, K. C. and J. M. Shepherd (2009). "Global urban land-use trends and climate impacts." Current Opinion in Environmental Sustainability 1(1): 89-95.
- Seto, K. C., et al. (2011). "A Meta-Analysis of Global Urban Land Expansion." PLOS ONE 6(8): e23777.
- Seto, K. C., et al. (2012). "Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools." Proceedings of the National Academy of Sciences 109(40): 16083.
- Sha, S., Liang, J., Chen, M., Xu, B., Liang, C., Wei, N., & Wu, K. (2014). Systematic review: faecal microbiota transplantation therapy for digestive and nondigestive disorders in adults and children. Alimentary pharmacology & therapeutics, 39(10), 1003-1032.
- Shackleton, C.M., S. Ruwanza, G.K. Sinasson Sanni, S. Bennett, P. De Lacy, R. Modipa, N. Mtati, M. Sachikonye, and G. Thondhlana, 2016. Unpacking Pandora's Box: Understanding and categorising ecosystem disservices for environmental management and human wellbeing. Ecosystems 19: 587-600.
- Shahinas, Dea, Michael Silverman, Taylor Sittler, Charles Chiu, Peter Kim, Emma Allen-Vercoe, Scott Weese, Andrew Wong, Donald E. Low, and Dylan R. Pillai. Toward an understanding of changes in diversity associated with fecal microbiome transplantation based on 16S rRNA gene deep sequencing. MBio 3, no. 5 (2012): e00338-12.
- Shepherd, E., et al. (2016). "Status and Trends in Global Ecosystem Services and Natural Capital: Assessing Progress Toward Aichi Biodiversity Target 14." Conservation Letters 9(6): 429-437.
- Sherwin, E., Dinan, T. G., & Cryan, J. F. (2018). Recent developments in understanding the role of the gut microbiota in brain health and disease. Annals of the New York Academy of Sciences, 1420(1), 5-25.
- Shrestha, U. B., & Bawa, K. S. (2013). Trade, harvest, and conservation of caterpillar fungus (Ophiocordyceps sinensis) in the Himalayas. Biological Conservation, 159, 514-520.
- Shrestha, U. B., & Bawa, K. S. (2014). Economic contribution of Chinese caterpillar fungus to the livelihoods of mountain communities in Nepal. Biological Conservation, 177, 194-202.
- Simenel R. (2017) Quand les animaux et les fleurs apprennent aux enfants à parler La transmission du langage chez les Aït Ba'amran (Maroc), l'Homme, No. 221, pp. 75-114 Published by: EHESS, Stable URL: http://www.jstor.org/stable/26250589

- Simon Bell, Susana Alves, Eva Silveirinha de Oliveira and Affonso Zuin, "Migration and Land Use Change in Europe: A Review", Living Rev. Landscape Res., 4, (2010), 2.
- Smith, F. P., R. Gorddard, A. P. N. House, S. McIntyre, and S. M. Prober. (2012). Biodiversity and agriculture: Production frontiers as a framework for exploring trade-offs and evaluating policy. Environmental Science & Policy 23:85-94.
- Smith, M. R., Singh, G. M., Mozaffarian, D. & Myers, S. S. (2015) Effects of decreases of animal pollinators on human nutrition and global health: a modelling analysis. Lancet 386, 1964–1972
- Smith, S. V., et al. (2003). "Humans, Hydrology, and the Distribution of Inorganic Nutrient Loading to the Ocean." BioScience 53(3): 235-245.
- Smits, L. P., Bouter, K. E., de Vos, W. M., Borody, T. J., & Nieuwdorp, M. (2013). Therapeutic potential of fecal microbiota transplantation. Gastroenterology, 145(5), 946-953.
- Soga, M. & Gaston, K. J. Extinction of experience: The loss of human-nature interactions. Front. Ecol. Environ. 14, 94–101 (2016).
- Sommer, F., & Bäckhed, F. (2013). The gut microbiota—masters of host development and physiology. Nature Reviews Microbiology, 11(4), 227.
- Song et al. 2018. Global land change from 1982 to 2016. Nature
- Song, X.P., Hansen, M.C., Stehman, S.V., Potapov, P.V., Tyukavina, A., Vermote, E.F. and Townshend, J.R., 2018. Global land change from 1982 to 2016. Nature, 560(7720), p.639.
- Sonneveld, B. G. J. S., M. A. Keyzer and D. Ndiaye (2016). Quantifying the impact of land degradation on crop production: the case of Senegal. Solid Earth, (7): 93–103
- Springmann, M., M. Clark, D. D'Croz, Keith Wiebe, Benjamin Bodirsky, Luis Lassaletta, W. De Vries, S. Vermeulen, M. Herrero, K. M. Carlson, M. Jonell, Max Troell, Fabrice DeClerck, L. J. Gordon, R. Zurayk, P. Scarborough, M. Rayner, B. Loken, J. Fanzo, C Godfray, D. Tilman, J Rockström, and W. Willett. 2018. 'Options for keeping the food system within environmental limits', Nature.
- Srinivasan, U.T., W.W.L. cheung, R. Watson, U.R. Sumaila. (2010) Food security implications of global marine catch losses due to overfishing. Journal of Bioeconomics 12 (3): 183-200.
- Steffen, W., K. Richardson, J. Rockstrom, S. E. Cornell, I. Fetzer, E. M. Bennett, R. Biggs, S. R. Carpenter, W. de Vries, C. A. de Wit, C. Folke, D. Gerten, J. Heinke, G. M. Mace, L. M. Persson, V. Ramanathan, B. Reyers, and S. Sorlin. 2015. 'Planetary boundaries: guiding human development on a changing planet', Science, 347.
- Stein, M. M., Hrusch, C. L., Gozdz, J., Igartua, C., Pivniouk, V., Murray, S. E., ... & Neilson, J. W. (2016). Innate immunity and asthma risk in Amish and Hutterite farm children. New England Journal of Medicine, 375(5), 411-421.
- Stephenson J (2008) The cultural values model: An integrated approach to values in landscapes. Landsc Urban Plan 84:127–139.
- Stepp, J. R., Cervone, S., Castaneda, H., & Lasseter, A. (2004). Development of a GIS for Global Biocultural Diversity, (November). Policy matters (13) 267-272

- Sterling, E. J., Filardi, C., Toomey, A., Sigouin, A., Betley, E., Gazit, N., ... Stege, K. (2017). Sustainability indicators across scales. Nature Ecology & Evolution, 1(December). https://doi.org/10.1038/s41559-017-0349-6
- Sterling, S. M., A. Ducharne and J. Polcher (2012). "The impact of global land-cover change on the terrestrial water cycle." Nature Climate Change 3(4): 385-390.
- Sterling, S. M., et al. (2013). "The impact of global land-cover change on the terrestrial water cycle." Nature Climate Change 3(4): 385-390.
- Stern, N. and C. Taylor. 2007. Climate Change: Risk, Ethics, and the Stern Review. Science 317: 203-204.
- Stigsdotter, U. K. and P. Grahn (2011). "Stressed individuals' preferences for activities and environmental characteristics in green spaces." Urban Forestry & Urban Greening 10(4): 295-304.
- Stoorvogel, J. J., M. Bakkenes, A. J. A. M. Temme, N. H. Batjes and B. J. E. Brink (2016). "S-World: A Global Soil Map for Environmental Modelling." Land Degradation & Development 28(1): 22-33.
- Sweeney, B. W. and J. D. Newbold (2014). "Streamside Forest Buffer Width Needed to Protect Stream Water Quality, Habitat, and Organisms: A Literature Review." JAWRA Journal of the American Water Resources Association 50(3): 560-584.
- Szablewski, L. (2018). Human Gut Microbiota in Health and Alzheimer's Disease. Journal of Alzheimer's Disease, 62(2), 549-560.
- Tanaka, S., Kobayashi, T., Songjinda, P., Tateyama, A., Tsubouchi, M., Kiyohara, C., et al. (2009). Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunology & Medical Microbiology, 56(1), 80-87.
- Tang, B. (2017). Explaining the inequitable spatial distribution of public open space in Hong Kong. Landscape and Urban Planning, 161, 80–89. https://doi.org/10.1016/j.landurbplan.2017.01.004
- Tang, W. W., Kitai, T., & Hazen, S. L. (2017). Gut microbiota in cardiovascular health and disease. Circulation research, 120(7), 1183-1196.
- Tanksley, S. D. and S. R. McCouch (1997). "Seed Banks and Molecular Maps: Unlocking Genetic Potential from the Wild." Science 277(5329): 1063.
- Tegen I. et al. (2002) Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study. J. Geophys. Res. 107:4576
- Tengö, M., et al. (2017). "Weaving knowledge systems in IPBES, CBD and beyond—lessons learned for sustainability." Current Opinion in Environmental Sustainability 26-27: 17-25.
- Thakur, Ajit Kumar, Anshul Shakya, Gulam Mohammed Husain, M. Emerald, and Vikas Kumar. "Gut-microbiota and mental health: current and future perspectives." J Pharmacol Clin Toxicol 2, no. 1 (2014): 1016.
- The Economics of Ecosystems and Biodiversity (TEEB) (2010) Ecological and Economic Foundations. Abington, UK: Earthscan

- The Economics of Ecosystems and Biodiversity (TEEB) for National and International Policy Makers. (2009a) Chapter 5 Rewarding benefits through payments and markets.
- The Economics of Ecosystems and Biodiversity (TEEB) for National and International Policy Makers. (2009b) Summary: responding to the value of nature
- The Economics of Ecosystems and Biodiversity (TEEB). 2015. TEEB for Agriculture and Food: an interim report. Geneva, Switzerland, UNEP UN Environment World Conservation Monitoring Centre Ocean Data Viewer
- Thomas B., Markus Biberacher, Sabine Gadocha, Ingrid Schardinger. 'Energy landscapes': Meeting energy demands and human aspirations. Biomas and Bioenergy 55 (2013) 3e16.
- Thorley, A. and C. M. Gunn (2008). Sacred sites: An overview, The Gaia Foundation.
- Tian et al., 2016. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531, 225
- Ticktin, T., Quazi, S., Dacks, R., Tora, M., McGuigan, A., Hastings, Z., & Naikatini, A. (2018). Linkages between measures of biodiversity and community resilience in Pacific Island agroforests. Conservation Biology, 32(5), 1085–1095. https://doi.org/10.1111/cobi.13152
- Tillmann, S., Tobin, D., Avison, W., Gilliland, J., (2018). Mental health benefits of interactions with nature in children and teenagers: A systematic review. Journal of Epidemiology and Community Health
- Tilman, D., and M. Clark. 2014. 'Global diets link environmental sustainability and human health', Nature, 515: 518-522.
- Toledo, V (2001). Indigenous peoples and biodiversity. In Encyclopedia of Biodiversity (Vol. 3, p. 22). https://doi.org/10.1016/B0-12-226865-2/00289-3
- Torrente, Frederic. (2016). Ancient magic and religious trends of the rahui on the atoll of Anaa, Tuamoto. In The rahui: Legal pluralism in Polynesian traditional management of resources and territories. Ed. Tamatoa Bambridge. ANU Press.
- Trabucco, A., et al. (2008). "Climate change mitigation through afforestation/reforestation: A global analysis of hydrologic impacts with four case studies." Agriculture, Ecosystems & Environment 126(1–2): 81-97.
- Tran, P., et al. (2009). "GIS and local knowledge in disaster management: a case study of flood risk mapping in Viet Nam." Disasters 33(1): 152-169.
- Troy, A., and M. A. Wilson. 2006. Mapping ecosystem services: practical challenges and opportunities in linking GIS and value transfer. Ecological Economics 60:435-449.
- Tsatsaros, J. H., Wellman, J. L., Bohnet, I. C., Brodie, J. E., & Valentine, P. (2018). Indigenous Water Governance in Australia : Comparisons with the United States and Canada †, 1–18. https://doi.org/10.3390/w10111639
- Tscharntke, T., et al. (2016). "When natural habitat fails to enhance biological pest control Five hypotheses." Biological Conservation 204: 449-458.
- Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., & Gordon, J. I. (2007). The human microbiome project. Nature, 449(7164), 804.

- Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. nature, 444(7122), 1027.
- Ukkola, A. M. and I. C. Prentice (2013). "A worldwide analysis of trends in water-balance evapotranspiration." Hydrology and Earth System Sciences 17(10): 4177-4187.
- Ulrika K. Stigsdotter, Anna Maria Palsdottir, Ambra Burls, Alessandra Chermaz, Francesco Ferrini, and Patrik Grahn, 2011. Nature-Based Therapeutic Interventions, in K. Nilsson et al. (eds.), Forests, Trees and Human Health, Springer Science+Business Media B.V. 2011.
- UNEP (2016). A Snapshot of the World's Water Quality: Towards a global assessment. Nairobi, Kenya, United Nations Environment Programme: 162.
- UNEP-WCMC and IUCN (2016). Protected Planet Report 2016. UNEP-WCMC and IUCN: Cambridge UK and Gland, Switzerland.
- United Nations Department of Economic and Social Affairs, Population Division (2014) World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352
- United Nations Human Settlements Programme (2003). The Challenge of Slums: Global Report on Human Settlements, 2003, Earthscan Publication
- US EPA (2009). United States Environmental Protection Agency Science Advisory Board. 2009. Valuing the Protection of Ecological Systems and Services. EPA-SAB-09-012. Washington, DC: US EPA.
- Van Aalst, M. K. (2006). "The impacts of climate change on the risk of natural disasters." Disasters 30(1): 5-18.
- Van der Esch, S., et al. (2017). Exploring future changes in land use and land condition and the impacts on food, water, climate change and biodiversity: Scenarios for the UNCCD Global Land Outlook. The Hague, PBL Netherlands Environmental Assessment Agency.
- Van der Ploeg, S. and R.S. de Groot. 2010. The TEEB Valuation Database a searchable database of 1310 estimates of monetary values of ecosystem services. Foundation for Sustainable Development, Wageningen, The Netherlands.
- van Dijk, A. and R. J. Keenan (2007). "Planted forests and water in perspective." Forest Ecology and Management 251(1-2): 1-9.
- Van Dijk, A. I. J. M., et al. (2009). "Forest-flood relation still tenuous comment on 'Global evidence that deforestation amplifies flood risk and severity in the developing world' by C. J. A. Bradshaw, N.S. Sodi, K. S.-H. Peh and B.W. Brook." Global Change Biology 15(1): 110-115.
- Van Nood, Els, Anne Vrieze, Max Nieuwdorp, Susana Fuentes, Erwin G. Zoetendal, Willem M. de Vos, Caroline E. Visser et al. "Duodenal infusion of donor feces for recurrent Clostridium difficile." New England Journal of Medicine 368, no. 5 (2013): 407-415.
- Vaz, A.S., C. Kueffer, C.A. Kull, D.M. Richardson, J.R. Vicente, I. Kühn, M. Schröter, J. Hauck, A. Bonn and J.P. Honrado, 2017. Integrating ecosystem services and disservices: Insights from plant invasions. Ecosystem Services 23: 94-107.

- Veitayaki, J. (2015). Fisheries resource-use culture in Fiji and its implications. In Culture and Sustainable Development in the Pacific. Ed. Antony Hooper. ANU Press.
- Veland, S., et al. (2010). "Invisible institutions in emergencies: Evacuating the remote Indigenous community of Warruwi, Northern Territory Australia, from Cyclone Monica." Environmental Hazards 9(2): 197-214.
- Velmurugan, G., Ramprasath, T., Gilles, M., Swaminathan, K., & Ramasamy, S. (2017). Gut microbiota, endocrine-disrupting chemicals, and the diabetes epidemic. Trends in Endocrinology & Metabolism, 28(8), 612-625.
- Ver Heul, A., Planer, J., & Kau, A. L. (2018). The Human Microbiota and Asthma. Clinical reviews in allergy & immunology, 1-14.
- Verhulst, S. L., Vael, C., Beunckens, C., Nelen, V., Goossens, H., & Desager, K. (2008). A longitudinal analysis on the association between antibiotic use, intestinal microflora, and wheezing during the first year of life. Journal of Asthma, 45(9), 828-832.
- Verschuuren, B, Wild, R, McNeely, J, Oviedo, G. (2010). Sacred Natural Sites. Conserving Nature and Culture. https://doi.org/10.1080/00207233.2011.585763
- Veteto, J. R. and K. Skarbø (2009). "Sowing the Seeds: Anthropological Contributions to Agrobiodiversity Studies." Culture & Agriculture 31(2): 73-87.
- Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, et al. (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science;350:1079–84.
- Villamagna, A. M., P. L. Angermeier, and E. M. Bennett. 2013. Capacity, pressure, demand, and flow: a conceptual framework for analyzing ecosystem service provision and delivery. Ecological Complexity 15:1–5.
- Vining, J., et al. (2008). "The Distinction between Humans and Nature: Human Perceptions of Connectedness to Nature and Elements of the Natural and Unnatural." Human Ecology Review 15(1): 1-11.
- Von Hertzen, L., Hanski, I., & Haahtela, T. (2011). Natural immunity: biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO reports, 12(11), 1089-1093.
- Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913–916.
- Waddell, E. (1975). "How the Enga cope with frost: Responses to climatic perturbations in the Central Highlands of New Guinea." Human Ecology 3(4): 249-273.
- Walpole, M., et al. (2011). Developing ecosystem service indicators: Experiences and lessons learned from sub-global assessments and other initiatives, Secretariat of the Convention on Biological Diversity.
- Walshe, R. A. and P. D. Nunn (2012). "Integration of indigenous knowledge and disaster risk reduction: A case study from Baie Martelli, Pentecost Island, Vanuatu." International Journal of Disaster Risk Science 3(4): 185-194.

- Wang, B., Yao, M., Lv, L., Ling, Z., & Li, L. (2017). The human microbiota in health and disease. Engineering, 3(1), 71-82.
- Wang, H. 2016. Global, regional, and national life expectancy, all-cause mortality, and causespecific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet 388: 1459-1544.
- Watson, K. B., et al. (2019). "Effects of human demand on conservation planning for biodiversity and ecosystem services." Conservation Biology
- WEA (2000). World Energy Assessment of the United Nations, UNDP, UNDESA/WEC, Published by: UNDP, New York
- Webb, J. R., I. R. Santos, D. T. Maher and K. Finlay (2018). "The Importance of Aquatic Carbon Fluxes in Net Ecosystem Carbon Budgets: A Catchment-Scale Review." Ecosystems.
- Wehi, P. M., et al. (2018). "Human Perceptions of Megafaunal Extinction Events Revealed by Linguistic Analysis of Indigenous Oral Traditions." Human Ecology 46(4): 461-470.
- Weitzman, M.L. 1998. Why the Far-Distant Future Should Be Discounted at Its Lowest Possible Rate. Journal of Environmental Economics. 36: 201-208.
- Wells, N. M. and G. W. Evans (2003). "Nearby Nature: A Buffer of Life Stress among Rural Children." Environment and Behavior 35(3): 311-330.
- White, L. S., den Bogaerde Van, J., & Kamm, M. (2018). The gut microbiota: cause and cure of gut diseases. The Medical journal of Australia, 209(7), 312-317.
- Whiteman, A., et al. (2015). "Global trends in forest ownership, public income and expenditure on forestry and forestry employment." Forest Ecology and Management 352: 99-108.
- Whitmee, S., et al. (2015). "Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation–Lancet Commission on planetary health." The Lancet 386(10007): 1973-2028.
- WHO (2013). World Health Organization traditional medicine strategy: 2014-2023. Geneva: World Health Organization; 2013.
- WHO (2014). A global brief on vector-borne diseases. World Health Organization. http://www.who.int/iris/handle/10665/111008
- WHO (2016) Ambient air pollution: A global assessment of exposure and burden of disease.
- WHO (2016b). Urban population growth, global health observatory data. Retrieved April 26, 2016 from. http://www.who.int/gho/ urban
- WHO (2016c). World Health Organization Global Urban Ambient Air Pollution Database (update 2016). https://www.who.int/phe/health topics/outdoorair/databases/cities/en/
- WHO and UNICEF (2017). Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. Geneva, World Health Organization (WHO) and the United Nations Children's Fund (UNICEF).
- Wilcox, B. A., & Gubler, D. J. (2005). Disease ecology and the global emergence of zoonotic pathogens. Environmental Health and Preventive Medicine, 10(5), 263-272.
- Willemse L. (2018) A class-differentiated analysis of park use in Cape Town, South Africa GeoJournal, 2018, Volume 83, Number 5, Page 915

- Willett, W., Johan Rockström, Brent Loken, Marco Springmann, Tim Lang, Sonja Vermeulen, Tara Garnett, David Tilman, Fabrice DeClerck, Amanda Wood, Malin Jonell, Michael Clark, Line Gordon, Jessica Fanzo, Corinna Hawkes, Rami Zurayk, Juan A. Rivera, De Vries, Lindiwe Sibanda, Ashkan Afshin, Abhishek Chaudhary, Mario Herrero, Rina Agustina, Francesco Branca, Anna Lartey, Shenggen Fan, Beatrice Crona, Elizabeth Fox, Victoria Bignet, Max Troell, Therese Lindahl, Sudhvir Singh, Sarah Cornell, Srinath Reddy, Sunita Narain, Sania Nishtar, and Chris Murray. (2019) 'Our Food in the Anthropocene: The EAT-Lancet Commission on Healthy Diets from Sustainable Food Systems. ', The Lancet. doi: https://foodplanethealth.org/
- Williams Jr, J. A., et al. (2012). "The Human-Environment Dialog in Award-winning Children's Picture Books*." Sociological Inquiry 82(1): 145-159.
- Wilson, E. O. (2016). Half-earth: our planet's fight for life, WW Norton & Company.
- Wilson, N. J., Mutter, E., Inkster, J., & Satter, T. (2018). Community-Based Monitoring as the practice of Indigenous governance : A case study of Indigenous-led water quality monitoring in the Yukon River Basin, 210, 290–298. https://doi.org/10.1016/j.jenvman.2018.01.020
- Wilson, S. (2008). Research is ceremony: Indigenous research methods. Black Point, NS, Canada, Fernwood Publishing.
- WOA: The First Global Integrated Marine Assessment, World Ocean Assessment I. 2016. United Nations. The Group of Experts of the Regular Process: Lorna Inniss and Alan Simcock (Joint Coordinators), Amanuel Yoanes Ajawin, Angel C. Alcala, Patricio Bernal, Hilconida P. Calumpong, Peyman Eghtesadi Araghi, Sean O. Green, Peter Harris, Osman Keh Kamara, Kunio Kohata, Enrique Marschoff, Georg Martin, Beatrice Padovani Ferreira, Chul Park, Rolph Antoine Payet, Jake Rice, Andrew Rosenberg, Renison Ruwa, Joshua T. Tuhumwire, Saskia Van Gaever, Juying Wang, Jan Marcin W?s?awski. Under the auspices of the United Nations General Assembly and its Regular Process for Global Reporting and Assessment of the State of the Marine Environment, including Socioeconomic Aspects.
- Wolff, S., Schulp, C. J. E., Kastner, T., & Verburg, P. H. (2017). Quantifying Spatial Variation in Ecosystem Services Demand: A Global Mapping Approach. Ecological Economics, 136, 14–29. https://doi.org/10.1016/j.ecolecon.2017.02.005
- Wolt, J. D., et al. (2016). "The Regulatory Status of Genome-edited Crops." Plant Biotechnology Journal 14(2): 510-518.
- World Meteorological Organization Greenhouse Gas Bulletin. (2107) The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2016. 2017
- Worldwide Indigenous Science Network (2019). "What is indigenous science?". Retrieved 2/15/2019, 2019, from https://wisn.org/about/what-is-indigenous-science/.
- Worm, B. et al. 2006. Impacts of Biodiversity Loss on Ocean Ecosystem Services. Science 314, 787-790.

- Worm, B., Hilborn, R., Baum, J.K., Branch, T. a, Collie, J.S., Costello, C., et al. (2009). Rebuilding global fisheries. Science, 325, 578-585
- WWAP (United National World Water Assessment Programme) (2015). The United Nations world water development report 2015: water for a sustainable world. Paris, UNESCO.
- Wyckhuys, K. A., Y. Lu, H. Morales, L. L. Vazquez, J. C. Legaspi, P. A. Eliopoulos, and L. M. Hernandez. 2013. Current status and potential of conservation biological control for agriculture in the developing world. Biological Control 65:152-167.
- Yacoub (2018). Knowledge and community resilience in rangelands recovery: the case of Wadi Allaqi Biosphere Reserve, South Eastern Desert, Egypt. Restoration Ecology, 2018. Retrieved from https://doi-org.inee.bib.cnrs.fr/10.1111/rec.12667
- Yates, L. and L. Anderson-Berry (2004). "The Societal and Environmental Impacts of Cyclone Zoe and the Effectiveness of the Tropical Cyclone Warning Systems in Tikopia and Anuta Solomon Islands: December 26-29, 2002." Australian Journal of Emergency Management, The 19(1): 16.
- Zardo, L., Geneletti, D., Pérez-Soba, M. & Van Eupen, M. Estimating the cooling capacity of green infrastructures to support urban planning. Ecosyst. Serv. 26, 225–235 (2017).
- Zhao, M., F. A. Heinsch, R. R. Nemani and S. W. Running (2005). "Improvements of the MODIS terrestrial gross and net primary production global data set." Remote Sensing of Environment 95(2): 164-176.
- Zhu, B., Wang, X., & Li, L. (2010). Human gut microbiome: the second genome of human body. Protein & cell, 1(8), 718-725.
- Zhu, Z., et al. (2016). "Greening of the Earth and its drivers." Nature Climate Change 6: 791.
- Zhu, Z., J. Bi, Y. Pan, S. Ganguly, A. Anav, L. Xu, A. Samanta, S. Piao, R. R. Nemani and B. R. Myneni (2013). "Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011." Remote Sensing 5(2).
- Zomer, R. J., et al. (2009). "Trees on farm: analysis of global extent and geographical patterns of agroforestry." ICRAF Working Paper-World Agroforestry Centre(89).
- Zurick, D. (2006). "Gross national happiness and envrionmental status in Bhutan." Geographical Review 96(4): 657-681.